from typing import Optional, Tuple import torch import torch.nn as nn class SiglipVisionConfig: def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=16, layer_norm_eps=1e-6, attention_dropout=0.0, num_image_tokens: int = None, **kwargs, ): super().__init__() self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.num_image_tokens = num_image_tokens class SiglipVisionEmbeddings(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", # This indicates no padding is added ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer( "position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False, ) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: _, _, height, width = ( pixel_values.shape ) # [Batch_Size, Channels, Height, Width] # Convolve the `patch_size` kernel over the image, with no overlapping patches since the stride is equal to the kernel size # The output of the convolution will have shape [Batch_Size, Embed_Dim, Num_Patches_H, Num_Patches_W] # where Num_Patches_H = height // patch_size and Num_Patches_W = width // patch_size patch_embeds = self.patch_embedding(pixel_values) # [Batch_Size, Embed_Dim, Num_Patches_H, Num_Patches_W] -> [Batch_Size, Embed_Dim, Num_Patches] # where Num_Patches = Num_Patches_H * Num_Patches_W embeddings = patch_embeds.flatten(2) # [Batch_Size, Embed_Dim, Num_Patches] -> [Batch_Size, Num_Patches, Embed_Dim] embeddings = embeddings.transpose(1, 2) # Add position embeddings to each patch. Each positional encoding is a vector of size [Embed_Dim] embeddings = embeddings + self.position_embedding(self.position_ids) # [Batch_Size, Num_Patches, Embed_Dim] return embeddings class SiglipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.scale = self.head_dim**-0.5 # Equivalent to 1 / sqrt(self.head_dim) self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: # hidden_states: [Batch_Size, Num_Patches, Embed_Dim] batch_size, seq_len, _ = hidden_states.size() # query_states: [Batch_Size, Num_Patches, Embed_Dim] query_states = self.q_proj(hidden_states) # key_states: [Batch_Size, Num_Patches, Embed_Dim] key_states = self.k_proj(hidden_states) # value_states: [Batch_Size, Num_Patches, Embed_Dim] value_states = self.v_proj(hidden_states) # query_states: [Batch_Size, Num_Heads, Num_Patches, Head_Dim] query_states = query_states.view( batch_size, seq_len, self.num_heads, self.head_dim ).transpose(1, 2) key_states = key_states.view( batch_size, seq_len, self.num_heads, self.head_dim ).transpose(1, 2) value_states = value_states.view( batch_size, seq_len, self.num_heads, self.head_dim ).transpose(1, 2) # Calculate the attention using the formula Q * K^T / sqrt(d_k). attn_weights: [Batch_Size, Num_Heads, Num_Patches, Num_Patches] attn_weights = ( torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale ) if attn_weights.size() != (batch_size, self.num_heads, seq_len, seq_len): raise ValueError( f"Attention weights should be of size {(batch_size, self.num_heads, seq_len, seq_len)}, but is" f" {attn_weights.size()}" ) # Apply the softmax row-wise. attn_weights: [Batch_Size, Num_Heads, Num_Patches, Num_Patches] attn_weights = nn.functional.softmax( attn_weights, dim=-1, dtype=torch.float32 ).to(query_states.dtype) # Apply dropout only during training attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # Multiply the attention weights by the value states. attn_output: [Batch_Size, Num_Heads, Num_Patches, Head_Dim] attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (batch_size, self.num_heads, seq_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, seq_len, self.head_dim)}, but is" f" {attn_output.size()}" ) # [Batch_Size, Num_Heads, Num_Patches, Head_Dim] -> [Batch_Size, Num_Patches, Num_Heads, Head_Dim] attn_output = attn_output.transpose(1, 2).contiguous() # [Batch_Size, Num_Patches, Num_Heads, Head_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim) # [Batch_Size, Num_Patches, Embed_Dim] attn_output = self.out_proj(attn_output) return attn_output, attn_weights class SiglipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Intermediate_Size] hidden_states = self.fc1(hidden_states) # hidden_states: [Batch_Size, Num_Patches, Intermediate_Size] hidden_states = nn.functional.gelu(hidden_states, approximate="tanh") # [Batch_Size, Num_Patches, Intermediate_Size] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states = self.fc2(hidden_states) return hidden_states class SiglipEncoderLayer(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = SiglipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) # Ignore copy def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # residual: [Batch_Size, Num_Patches, Embed_Dim] residual = hidden_states # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states = self.layer_norm1(hidden_states) # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states, _ = self.self_attn(hidden_states=hidden_states) # [Batch_Size, Num_Patches, Embed_Dim] hidden_states = residual + hidden_states # residual: [Batch_Size, Num_Patches, Embed_Dim] residual = hidden_states # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states = self.layer_norm2(hidden_states) # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states = self.mlp(hidden_states) # [Batch_Size, Num_Patches, Embed_Dim] hidden_states = residual + hidden_states return hidden_states class SiglipEncoder(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList( [SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)] ) # Ignore copy def forward(self, inputs_embeds: torch.Tensor) -> torch.Tensor: # inputs_embeds: [Batch_Size, Num_Patches, Embed_Dim] hidden_states = inputs_embeds for encoder_layer in self.layers: # [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states = encoder_layer(hidden_states) return hidden_states class SiglipVisionTransformer(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipVisionEmbeddings(config) self.encoder = SiglipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: # pixel_values: [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim] hidden_states = self.embeddings(pixel_values) last_hidden_state = self.encoder(inputs_embeds=hidden_states) last_hidden_state = self.post_layernorm(last_hidden_state) return last_hidden_state class SiglipVisionModel(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config self.vision_model = SiglipVisionTransformer(config) def forward(self, pixel_values) -> Tuple: # [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim] return self.vision_model(pixel_values=pixel_values)