Update inference_manager.py
Browse files- inference_manager.py +4 -4
inference_manager.py
CHANGED
@@ -26,7 +26,7 @@ import cv2
|
|
26 |
import re
|
27 |
import gradio as gr
|
28 |
from PIL import Image
|
29 |
-
MAX_SEED = np.iinfo(np.int32).max
|
30 |
#from onediffx import compile_pipe, save_pipe, load_pipe
|
31 |
|
32 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
@@ -509,7 +509,7 @@ class ModelManager:
|
|
509 |
p = remove_child_related_content(p)
|
510 |
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
|
511 |
generator = torch.Generator(model.base_model_pipeline.device).manual_seed(seed)
|
512 |
-
print(f"generate: p={p}, np={
|
513 |
images = ip_model.generate(
|
514 |
prompt=prompt_str,
|
515 |
negative_prompt=negative_prompt,
|
@@ -558,7 +558,7 @@ class ModelManager:
|
|
558 |
lora_list = inference_params.get("loras", [])
|
559 |
seed = inference_params.get("seed", 0)
|
560 |
|
561 |
-
pipe = model.build_pipeline_with_lora(lora_list, sampler
|
562 |
|
563 |
start = time.time()
|
564 |
pipe.to("cuda")
|
@@ -571,7 +571,7 @@ class ModelManager:
|
|
571 |
p = remove_child_related_content(p)
|
572 |
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
|
573 |
generator = torch.Generator(pipe.device).manual_seed(seed)
|
574 |
-
print(f"generate: p={p}, np={
|
575 |
images = pipe(
|
576 |
prompt=prompt_str,
|
577 |
negative_prompt=negative_prompt,
|
|
|
26 |
import re
|
27 |
import gradio as gr
|
28 |
from PIL import Image
|
29 |
+
MAX_SEED = 12211231#np.iinfo(np.int32).max
|
30 |
#from onediffx import compile_pipe, save_pipe, load_pipe
|
31 |
|
32 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
|
|
509 |
p = remove_child_related_content(p)
|
510 |
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
|
511 |
generator = torch.Generator(model.base_model_pipeline.device).manual_seed(seed)
|
512 |
+
print(f"generate: p={p}, np={negative_prompt}, steps={steps}, guidance_scale={guidance_scale}, size={width},{height}, seed={seed}")
|
513 |
images = ip_model.generate(
|
514 |
prompt=prompt_str,
|
515 |
negative_prompt=negative_prompt,
|
|
|
558 |
lora_list = inference_params.get("loras", [])
|
559 |
seed = inference_params.get("seed", 0)
|
560 |
|
561 |
+
pipe = model.build_pipeline_with_lora(lora_list, sampler)
|
562 |
|
563 |
start = time.time()
|
564 |
pipe.to("cuda")
|
|
|
571 |
p = remove_child_related_content(p)
|
572 |
prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
|
573 |
generator = torch.Generator(pipe.device).manual_seed(seed)
|
574 |
+
print(f"generate: p={p}, np={negative_prompt}, steps={steps}, guidance_scale={guidance_scale}, size={width},{height}, seed={seed}")
|
575 |
images = pipe(
|
576 |
prompt=prompt_str,
|
577 |
negative_prompt=negative_prompt,
|