Spaces:
Runtime error
Runtime error
File size: 15,858 Bytes
bfc0ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
"""The interface for the database."""
from __future__ import annotations
import abc
import enum
import pathlib
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from typing import Any, Iterator, Literal, Optional, Sequence, Union
import pandas as pd
from pydantic import (
BaseModel,
StrictBool,
StrictBytes,
StrictFloat,
StrictInt,
StrictStr,
validator,
)
from typing_extensions import TypeAlias
from lilac.signals.concept_scorer import ConceptSignal
from ..auth import UserInfo
from ..config import DatasetConfig, DatasetSettings, DatasetUISettings
from ..schema import (
PATH_WILDCARD,
ROWID,
VALUE_KEY,
Bin,
DataType,
Path,
PathTuple,
Schema,
normalize_path,
)
from ..signal import Signal, TextEmbeddingSignal, get_signal_by_type, resolve_signal
from ..tasks import TaskStepId
# Threshold for rejecting certain queries (e.g. group by) for columns with large cardinality.
TOO_MANY_DISTINCT = 500_000
SAMPLE_AVG_TEXT_LENGTH = 1000
MAX_TEXT_LEN_DISTINCT_COUNT = 250
class SelectRowsResult:
"""The result of a select rows query."""
def __init__(self, df: pd.DataFrame, total_num_rows: int) -> None:
"""Initialize the result."""
self._df = df
self.total_num_rows = total_num_rows
def __iter__(self) -> Iterator:
return (row.to_dict() for _, row in self._df.iterrows())
def df(self) -> pd.DataFrame:
"""Convert the result to a pandas DataFrame."""
return self._df
class StatsResult(BaseModel):
"""The result of a stats() query."""
path: PathTuple
# The number of leaf values.
total_count: int
# The approximate number of distinct leaf values.
approx_count_distinct: int
# Defined for ordinal features.
min_val: Optional[Union[float, datetime]] = None
max_val: Optional[Union[float, datetime]] = None
# Defined for text features.
avg_text_length: Optional[float] = None
class MediaResult(BaseModel):
"""The result of a media() query."""
data: bytes
BinaryOp = Literal['equals', 'not_equal', 'greater', 'greater_equal', 'less', 'less_equal']
UnaryOp = Literal['exists']
ListOp = Literal['in']
BINARY_OPS = set(['equals', 'not_equal', 'greater', 'greater_equal', 'less', 'less_equal'])
UNARY_OPS = set(['exists'])
LIST_OPS = set(['in'])
SearchType = Union[Literal['keyword'], Literal['semantic'], Literal['concept']]
class SortOrder(str, enum.Enum):
"""The sort order for a database query."""
DESC = 'DESC'
ASC = 'ASC'
class GroupsSortBy(str, enum.Enum):
"""The sort for groups queries.
Either "count" which sorts by the count of feature value, or "value" which sorts by the
feature value itself.
"""
COUNT = 'count'
VALUE = 'value'
class SortResult(BaseModel):
"""The information about what is sorted after combining searches and explicit sorts."""
# The column that was sorted.
path: PathTuple
# The sort order.
order: SortOrder
# The alias of the column if it was aliased.
alias: Optional[str] = None
# The search index if the sort is by a search.
search_index: Optional[int] = None
class SearchResultInfo(BaseModel):
"""The resulting sort order returned by the select rows schema."""
# The input path to the search.
search_path: PathTuple
# The resulting column that was searched.
result_path: PathTuple
# The alias of the UDF.
alias: Optional[str] = None
class SelectRowsSchemaUDF(BaseModel):
"""The UDF for a select rows schema query."""
path: PathTuple
alias: Optional[str] = None
class SelectRowsSchemaResult(BaseModel):
"""The result of a select rows schema query."""
data_schema: Schema
udfs: list[SelectRowsSchemaUDF] = []
search_results: list[SearchResultInfo] = []
sorts: Optional[list[SortResult]] = None
class Column(BaseModel):
"""A column in the dataset."""
path: PathTuple
alias: Optional[str] = None # This is the renamed column during querying and response.
# Defined when the feature is another column.
signal_udf: Optional[Signal] = None
class Config:
smart_union = True
def __init__(self,
path: Path,
alias: Optional[str] = None,
signal_udf: Optional[Signal] = None,
**kwargs: Any):
"""Initialize a column. We override __init__ to allow positional arguments for brevity."""
super().__init__(path=normalize_path(path), alias=alias, signal_udf=signal_udf, **kwargs)
@validator('signal_udf', pre=True)
def parse_signal_udf(cls, signal_udf: Optional[dict]) -> Optional[Signal]:
"""Parse a signal to its specific subclass instance."""
if not signal_udf:
return None
return resolve_signal(signal_udf)
ColumnId = Union[Path, Column]
class DatasetManifest(BaseModel):
"""The manifest for a dataset."""
namespace: str
dataset_name: str
data_schema: Schema
# Number of items in the dataset.
num_items: int
def column_from_identifier(column: ColumnId) -> Column:
"""Create a column from a column identifier."""
if isinstance(column, Column):
return column.copy()
return Column(path=column)
FeatureValue = Union[StrictInt, StrictFloat, StrictBool, StrictStr, StrictBytes, datetime]
FeatureListValue = list[StrictStr]
BinaryFilterTuple = tuple[Path, BinaryOp, FeatureValue]
ListFilterTuple = tuple[Path, ListOp, FeatureListValue]
UnaryFilterTuple = tuple[Path, UnaryOp]
FilterOp = Union[BinaryOp, UnaryOp, ListOp]
class SelectGroupsResult(BaseModel):
"""The result of a select groups query."""
too_many_distinct: bool
counts: list[tuple[Optional[FeatureValue], int]]
bins: Optional[list[Bin]] = None
class Filter(BaseModel):
"""A filter on a column."""
path: PathTuple
op: FilterOp
value: Optional[Union[FeatureValue, FeatureListValue]] = None
FilterLike: TypeAlias = Union[Filter, BinaryFilterTuple, UnaryFilterTuple, ListFilterTuple]
SearchValue = StrictStr
class KeywordSearch(BaseModel):
"""A keyword search query on a column."""
path: Path
query: SearchValue
type: Literal['keyword'] = 'keyword'
class SemanticSearch(BaseModel):
"""A semantic search on a column."""
path: Path
query: SearchValue
embedding: str
type: Literal['semantic'] = 'semantic'
class ConceptSearch(BaseModel):
"""A concept search query on a column."""
path: Path
concept_namespace: str
concept_name: str
embedding: str
type: Literal['concept'] = 'concept'
Search = Union[ConceptSearch, SemanticSearch, KeywordSearch]
class Dataset(abc.ABC):
"""The database implementation to query a dataset."""
namespace: str
dataset_name: str
def __init__(self, namespace: str, dataset_name: str):
"""Initialize a dataset.
Args:
namespace: The dataset namespace.
dataset_name: The dataset name.
"""
self.namespace = namespace
self.dataset_name = dataset_name
@abc.abstractmethod
def delete(self) -> None:
"""Deletes the dataset."""
pass
@abc.abstractmethod
def manifest(self) -> DatasetManifest:
"""Return the manifest for the dataset."""
pass
@abc.abstractmethod
def config(self) -> DatasetConfig:
"""Return the dataset config for this dataset."""
pass
@abc.abstractmethod
def settings(self) -> DatasetSettings:
"""Return the persistent settings for the dataset."""
pass
@abc.abstractmethod
def update_settings(self, settings: DatasetSettings) -> None:
"""Update the settings for the dataset."""
pass
@abc.abstractmethod
def compute_signal(self,
signal: Signal,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
"""Compute a signal for a column.
Args:
signal: The signal to compute over the given columns.
path: The leaf path to compute the signal on.
task_step_id: The TaskManager `task_step_id` for this process run. This is used to update the
progress of the task.
"""
pass
def compute_embedding(self,
embedding: str,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
"""Compute an embedding for a given field path."""
signal = get_signal_by_type(embedding, TextEmbeddingSignal)()
self.compute_signal(signal, path, task_step_id)
def compute_concept(self,
namespace: str,
concept_name: str,
embedding: str,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
"""Compute concept scores for a given field path."""
signal = ConceptSignal(namespace=namespace, concept_name=concept_name, embedding=embedding)
self.compute_signal(signal, path, task_step_id)
@abc.abstractmethod
def delete_signal(self, signal_path: Path) -> None:
"""Delete a computed signal from the dataset.
Args:
signal_path: The path holding the computed data of the signal.
"""
pass
@abc.abstractmethod
def select_groups(
self,
leaf_path: Path,
filters: Optional[Sequence[FilterLike]] = None,
sort_by: Optional[GroupsSortBy] = None,
sort_order: Optional[SortOrder] = SortOrder.DESC,
limit: Optional[int] = None,
bins: Optional[Union[Sequence[Bin], Sequence[float]]] = None) -> SelectGroupsResult:
"""Select grouped columns to power a histogram.
Args:
leaf_path: The leaf path to group by. The path can be a dot-seperated string path, or a tuple
of fields.
filters: The filters to apply to the query.
sort_by: What to sort by, either "count" or "value".
sort_order: The sort order.
limit: The maximum number of rows to return.
bins: The bins to use when bucketizing a float column.
Returns
A `SelectGroupsResult` iterator where each row is a group.
"""
raise NotImplementedError
@abc.abstractmethod
def select_rows(self,
columns: Optional[Sequence[ColumnId]] = None,
searches: Optional[Sequence[Search]] = None,
filters: Optional[Sequence[FilterLike]] = None,
sort_by: Optional[Sequence[Path]] = None,
sort_order: Optional[SortOrder] = SortOrder.DESC,
limit: Optional[int] = 100,
offset: Optional[int] = 0,
task_step_id: Optional[TaskStepId] = None,
resolve_span: bool = False,
combine_columns: bool = False,
user: Optional[UserInfo] = None) -> SelectRowsResult:
"""Select a set of rows that match the provided filters, analogous to SQL SELECT.
Args:
columns: The columns to select. A column is an instance of `Column` which can either
define a path to a feature, or a column with an applied Transform, e.g. a Concept. If none,
it selects all columns.
searches: The searches to apply to the query.
filters: The filters to apply to the query.
sort_by: An ordered list of what to sort by. When defined, this is a list of aliases of column
names defined by the "alias" field in Column. If no alias is provided for a column, an
automatic alias is generated by combining each path element with a "."
For example: e.g. ('person', 'name') => person.name. For columns that are transform columns,
an alias must be provided explicitly. When sorting by a (nested) list of values, the sort
takes the minumum value when `sort_order` is `ASC`, and the maximum value when `sort_order`
is `DESC`.
sort_order: The sort order.
limit: The maximum number of rows to return.
offset: The offset to start returning rows from.
task_step_id: The TaskManager `task_step_id` for this process run. This is used to update the
progress.
resolve_span: Whether to resolve the span of the row.
combine_columns: Whether to combine columns into a single object. The object will be pruned
to only include sub-fields that correspond to the requested columns.
user: The authenticated user, if auth is enabled and the user is logged in. This is used to
apply ACL to the query, especially for concepts.
Returns
A `SelectRowsResult` iterator with rows of `Item`s.
"""
pass
@abc.abstractmethod
def select_rows_schema(self,
columns: Optional[Sequence[ColumnId]] = None,
sort_by: Optional[Sequence[Path]] = None,
sort_order: Optional[SortOrder] = SortOrder.DESC,
searches: Optional[Sequence[Search]] = None,
combine_columns: bool = False) -> SelectRowsSchemaResult:
"""Returns the schema of the result of `select_rows` above with the same arguments."""
pass
@abc.abstractmethod
def stats(self, leaf_path: Path) -> StatsResult:
"""Compute stats for a leaf path.
Args:
leaf_path: The leaf path to compute stats for.
Returns
A StatsResult.
"""
pass
@abc.abstractmethod
def media(self, item_id: str, leaf_path: Path) -> MediaResult:
"""Return the media for a leaf path.
Args:
item_id: The item id to get media for.
leaf_path: The leaf path for the media.
Returns
A MediaResult.
"""
pass
@abc.abstractmethod
def to_json(self,
filepath: Union[str, pathlib.Path],
jsonl: bool = True,
columns: Optional[Sequence[ColumnId]] = None) -> None:
"""Export the dataset to a JSON file.
Args:
filepath: The path to the file to export to.
jsonl: Whether to export to JSONL or JSON.
columns: The columns to export.
"""
pass
@abc.abstractmethod
def to_pandas(self, columns: Optional[Sequence[ColumnId]] = None) -> pd.DataFrame:
"""Export the dataset to a pandas DataFrame.
Args:
columns: The columns to export.
"""
pass
@abc.abstractmethod
def to_parquet(self,
filepath: Union[str, pathlib.Path],
columns: Optional[Sequence[ColumnId]] = None) -> None:
"""Export the dataset to a parquet file.
Args:
filepath: The path to the file to export to.
columns: The columns to export.
"""
pass
@abc.abstractmethod
def to_csv(self,
filepath: Union[str, pathlib.Path],
columns: Optional[Sequence[ColumnId]] = None) -> None:
"""Export the dataset to a csv file.
Args:
filepath: The path to the file to export to.
columns: The columns to export.
"""
pass
def default_settings(dataset: Dataset) -> DatasetSettings:
"""Gets the default settings for a dataset."""
schema = dataset.manifest().data_schema
leaf_paths = [
path for path, field in schema.leafs.items()
if field.dtype == DataType.STRING and path != (ROWID,)
]
pool = ThreadPoolExecutor()
stats: list[StatsResult] = list(pool.map(lambda leaf: dataset.stats(leaf), leaf_paths))
sorted_stats = sorted([stat for stat in stats if stat.avg_text_length],
key=lambda stat: stat.avg_text_length or -1.0)
media_paths: list[PathTuple] = []
if sorted_stats:
media_paths = [sorted_stats[-1].path]
return DatasetSettings(ui=DatasetUISettings(media_paths=media_paths))
def make_parquet_id(signal: Signal,
source_path: PathTuple,
is_computed_signal: Optional[bool] = False) -> str:
"""Return a unique identifier for this parquet table."""
# Remove the wildcards from the parquet id since they are implicit.
path = [*[p for p in source_path if p != PATH_WILDCARD], signal.key(is_computed_signal)]
# Don't use the VALUE_KEY as part of the parquet id to reduce the size of paths.
if path[-1] == VALUE_KEY:
path = path[:-1]
return '.'.join(path)
|