Spaces:
Runtime error
Runtime error
File size: 73,944 Bytes
bfc0ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 |
"""The DuckDB implementation of the dataset database."""
import functools
import gc
import glob
import math
import os
import pathlib
import re
import shutil
import threading
from typing import Any, Iterable, Iterator, Optional, Sequence, Union, cast
import duckdb
import numpy as np
import pandas as pd
import yaml
from pandas.api.types import is_object_dtype
from pydantic import BaseModel, validator
from typing_extensions import override
from ..auth import UserInfo
from ..batch_utils import deep_flatten, deep_unflatten
from ..config import CONFIG_FILENAME, DatasetConfig, DatasetSettings, EmbeddingConfig, SignalConfig
from ..embeddings.vector_store import VectorDBIndex
from ..env import data_path, env
from ..schema import (
MANIFEST_FILENAME,
PATH_WILDCARD,
ROWID,
TEXT_SPAN_END_FEATURE,
TEXT_SPAN_START_FEATURE,
VALUE_KEY,
Bin,
DataType,
Field,
Item,
Path,
PathKey,
PathTuple,
RichData,
Schema,
SourceManifest,
column_paths_match,
is_float,
is_integer,
is_ordinal,
is_temporal,
normalize_path,
signal_type_supports_dtype,
)
from ..signal import Signal, TextEmbeddingSignal, VectorSignal, get_signal_by_type, resolve_signal
from ..signals.concept_labels import ConceptLabelsSignal
from ..signals.concept_scorer import ConceptSignal
from ..signals.semantic_similarity import SemanticSimilaritySignal
from ..signals.substring_search import SubstringSignal
from ..sources.source import Source
from ..tasks import TaskStepId, progress
from ..utils import DebugTimer, get_dataset_output_dir, log, open_file, to_yaml
from . import dataset
from .dataset import (
BINARY_OPS,
LIST_OPS,
MAX_TEXT_LEN_DISTINCT_COUNT,
SAMPLE_AVG_TEXT_LENGTH,
TOO_MANY_DISTINCT,
UNARY_OPS,
BinaryOp,
Column,
ColumnId,
Dataset,
DatasetManifest,
FeatureListValue,
FeatureValue,
Filter,
FilterLike,
GroupsSortBy,
MediaResult,
Search,
SearchResultInfo,
SelectGroupsResult,
SelectRowsResult,
SelectRowsSchemaResult,
SelectRowsSchemaUDF,
SortOrder,
SortResult,
StatsResult,
column_from_identifier,
make_parquet_id,
)
from .dataset_utils import (
count_primitives,
create_signal_schema,
flatten_keys,
merge_schemas,
schema_contains_path,
sparse_to_dense_compute,
wrap_in_dicts,
write_embeddings_to_disk,
write_items_to_parquet,
)
SIGNAL_MANIFEST_FILENAME = 'signal_manifest.json'
DATASET_SETTINGS_FILENAME = 'settings.json'
SOURCE_VIEW_NAME = 'source'
NUM_AUTO_BINS = 15
BINARY_OP_TO_SQL: dict[BinaryOp, str] = {
'equals': '=',
'not_equal': '!=',
'greater': '>',
'greater_equal': '>=',
'less': '<',
'less_equal': '<='
}
class DuckDBSearchUDF(BaseModel):
"""The transformation of searches to column UDFs."""
udf: Column
search_path: PathTuple
output_path: PathTuple
sort: Optional[tuple[PathTuple, SortOrder]] = None
class DuckDBSearchUDFs(BaseModel):
"""The transformation of searches to column UDFs with sorts."""
udfs: list[Column]
output_paths: list[PathTuple]
sorts: list[tuple[PathTuple, SortOrder]]
class DatasetDuckDB(Dataset):
"""The DuckDB implementation of the dataset database."""
def __init__(self, namespace: str, dataset_name: str, vector_store: str = 'hnsw'):
super().__init__(namespace, dataset_name)
self.dataset_path = get_dataset_output_dir(data_path(), namespace, dataset_name)
# TODO: Infer the manifest from the parquet files so this is lighter weight.
self._source_manifest = read_source_manifest(self.dataset_path)
self._signal_manifests: list[SignalManifest] = []
self.con = duckdb.connect(database=':memory:')
# Maps a path and embedding to the vector index. This is lazily generated as needed.
self._vector_indices: dict[tuple[PathKey, str], VectorDBIndex] = {}
self.vector_store = vector_store
self._manifest_lock = threading.Lock()
self._config_lock = threading.Lock()
config_filepath = get_config_filepath(namespace, dataset_name)
if not os.path.exists(config_filepath):
# For backwards compatibility, if the config doesn't exist, create one. This will be out of
# sync but allow the server to still boot and update with new config changes.
# Make a metaclass so we get a valid `Source` class.
source_cls = type('Source_no_source', (Source,), {'name': 'no_source'})
old_settings_filepath = os.path.join(
get_dataset_output_dir(data_path(), namespace, dataset_name), 'settings.json')
settings = DatasetSettings()
if os.path.exists(old_settings_filepath):
with open(old_settings_filepath) as f:
settings = DatasetSettings.parse_raw(f.read())
config = DatasetConfig(
namespace=namespace, name=dataset_name, source=source_cls(), settings=settings)
with open(get_config_filepath(self.namespace, self.dataset_name), 'w') as f:
f.write(to_yaml(config.dict(exclude_none=True, exclude_defaults=True)))
# Create a join table from all the parquet files.
self.manifest()
@override
def delete(self) -> None:
"""Deletes the dataset."""
self.con.close()
shutil.rmtree(self.dataset_path, ignore_errors=True)
def _create_view(self, view_name: str, files: list[str]) -> None:
self.con.execute(f"""
CREATE OR REPLACE VIEW {_escape_col_name(view_name)} AS (SELECT * FROM read_parquet({files}));
""")
# NOTE: This is cached, but when the latest mtime of any file in the dataset directory changes
# the results are invalidated.
@functools.cache
def _recompute_joint_table(self, latest_mtime_micro_sec: int) -> DatasetManifest:
del latest_mtime_micro_sec # This is used as the cache key.
merged_schema = self._source_manifest.data_schema.copy(deep=True)
self._signal_manifests = []
# Make a joined view of all the column groups.
self._create_view(SOURCE_VIEW_NAME,
[os.path.join(self.dataset_path, f) for f in self._source_manifest.files])
# Add the signal column groups.
for root, _, files in os.walk(self.dataset_path):
for file in files:
if not file.endswith(SIGNAL_MANIFEST_FILENAME):
continue
with open_file(os.path.join(root, file)) as f:
signal_manifest = SignalManifest.parse_raw(f.read())
self._signal_manifests.append(signal_manifest)
signal_files = [os.path.join(root, f) for f in signal_manifest.files]
if signal_files:
self._create_view(signal_manifest.parquet_id, signal_files)
merged_schema = merge_schemas([self._source_manifest.data_schema] +
[m.data_schema for m in self._signal_manifests])
# The logic below generates the following example query:
# CREATE OR REPLACE VIEW t AS (
# SELECT
# source.*,
# "parquet_id1"."root_column" AS "parquet_id1",
# "parquet_id2"."root_column" AS "parquet_id2"
# FROM source JOIN "parquet_id1" USING (rowid,) JOIN "parquet_id2" USING (rowid,)
# );
# NOTE: "root_column" for each signal is defined as the top-level column.
select_sql = ', '.join([f'{SOURCE_VIEW_NAME}.*'] + [(
f'{_escape_col_name(manifest.parquet_id)}.{_escape_col_name(_root_column(manifest))} '
f'AS {_escape_col_name(manifest.parquet_id)}')
for manifest in self._signal_manifests
if manifest.files])
join_sql = ' '.join([SOURCE_VIEW_NAME] + [
f'LEFT JOIN {_escape_col_name(manifest.parquet_id)} USING ({ROWID})'
for manifest in self._signal_manifests
if manifest.files
])
view_or_table = 'TABLE'
use_views = env('DUCKDB_USE_VIEWS', 0) or 0
if int(use_views):
view_or_table = 'VIEW'
sql_cmd = f"""CREATE OR REPLACE {view_or_table} t AS (SELECT {select_sql} FROM {join_sql})"""
self.con.execute(sql_cmd)
# Get the total size of the table.
size_query = 'SELECT COUNT() as count FROM t'
size_query_result = cast(Any, self._query(size_query)[0])
num_items = cast(int, size_query_result[0])
return DatasetManifest(
namespace=self.namespace,
dataset_name=self.dataset_name,
data_schema=merged_schema,
num_items=num_items)
@override
def manifest(self) -> DatasetManifest:
# Use the latest modification time of all files under the dataset path as the cache key for
# re-computing the manifest and the joined view.
with self._manifest_lock:
all_dataset_files = glob.iglob(os.path.join(self.dataset_path, '**'), recursive=True)
latest_mtime = max(map(os.path.getmtime, all_dataset_files))
latest_mtime_micro_sec = int(latest_mtime * 1e6)
return self._recompute_joint_table(latest_mtime_micro_sec)
def _update_config(self,
settings: Optional[DatasetSettings] = None,
signals: Optional[list[SignalConfig]] = None,
embeddings: Optional[list[EmbeddingConfig]] = None) -> None:
with self._config_lock:
config = self.config()
if settings is not None:
config.settings = settings
if signals is not None:
# Update the config with the new signal, if the new signal has not already been added (this
# can happen if a signal is re-computed)
update_config = True
for signal_config in signals:
for existing_signal in config.signals:
if (existing_signal.path == signal_config.path and
existing_signal.signal.dict() == signal_config.signal.dict()):
update_config = False
break
if update_config:
config.signals.append(signal_config)
if embeddings is not None:
# Update the config with the new signal, if the new signal has not already been added (this
# can happen if a signal is re-computed)
update_config = True
for embedding_config in embeddings:
for existing_embedding in config.embeddings:
if (existing_embedding.path == embedding_config.path and
existing_embedding.embedding == embedding_config.embedding):
update_config = False
break
if update_config:
config.embeddings.append(embedding_config)
with open(get_config_filepath(self.namespace, self.dataset_name), 'w') as f:
f.write(to_yaml(config.dict(exclude_none=True, exclude_defaults=True)))
@override
def config(self) -> DatasetConfig:
config_filepath = get_config_filepath(self.namespace, self.dataset_name)
with open(config_filepath) as f:
return DatasetConfig(**yaml.safe_load(f))
@override
def settings(self) -> DatasetSettings:
# Settings should always have a default.
settings = self.config().settings
assert settings is not None
return settings
@override
def update_settings(self, settings: DatasetSettings) -> None:
self._update_config(settings)
def count(self, filters: Optional[list[FilterLike]] = None) -> int:
"""Count the number of rows."""
raise NotImplementedError('count is not yet implemented for DuckDB.')
def _get_vector_db_index(self, embedding: str, path: PathTuple) -> VectorDBIndex:
# Refresh the manifest to make sure we have the latest signal manifests.
self.manifest()
index_key = (path, embedding)
if index_key in self._vector_indices:
return self._vector_indices[index_key]
manifests = [
m for m in self._signal_manifests
if schema_contains_path(m.data_schema, path) and m.vector_store and m.signal.name == embedding
]
if not manifests:
raise ValueError(f'No embedding found for path {path}.')
if len(manifests) > 1:
raise ValueError(f'Multiple embeddings found for path {path}. Got: {manifests}')
manifest = manifests[0]
if not manifest.vector_store:
raise ValueError(f'Signal manifest for path {path} is not an embedding. '
f'Got signal manifest: {manifest}')
base_path = os.path.join(self.dataset_path, _signal_dir(manifest.enriched_path),
manifest.signal.name)
path_id = f'{self.namespace}/{self.dataset_name}:{path}'
with DebugTimer(f'Loading vector store "{manifest.vector_store}" for {path_id}'
f' with embedding "{embedding}"'):
vector_index = VectorDBIndex(manifest.vector_store)
vector_index.load(base_path)
# Cache the vector index.
self._vector_indices[index_key] = vector_index
return vector_index
@override
def compute_signal(self,
signal: Signal,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
if isinstance(signal, TextEmbeddingSignal):
return self.compute_embedding(signal.name, path, task_step_id)
source_path = normalize_path(path)
manifest = self.manifest()
if task_step_id is None:
# Make a dummy task step so we report progress via tqdm.
task_step_id = ('', 0)
# The manifest may have changed after computing the dependencies.
manifest = self.manifest()
signal_col = Column(path=source_path, alias='value', signal_udf=signal)
select_rows_result = self.select_rows([ROWID, signal_col],
task_step_id=task_step_id,
resolve_span=True)
df = select_rows_result.df()
values = df['value']
enriched_path = _col_destination_path(signal_col, is_computed_signal=True)
spec = _split_path_into_subpaths_of_lists(enriched_path)
output_dir = os.path.join(self.dataset_path, _signal_dir(enriched_path))
signal_schema = create_signal_schema(signal, source_path, manifest.data_schema)
enriched_signal_items = cast(Iterable[Item], wrap_in_dicts(values, spec))
for rowid, item in zip(df[ROWID], enriched_signal_items):
item[ROWID] = rowid
enriched_signal_items = list(enriched_signal_items)
parquet_filename, _ = write_items_to_parquet(
items=enriched_signal_items,
output_dir=output_dir,
schema=signal_schema,
filename_prefix='data',
shard_index=0,
num_shards=1)
signal_manifest = SignalManifest(
files=[parquet_filename],
data_schema=signal_schema,
signal=signal,
enriched_path=source_path,
parquet_id=make_parquet_id(signal, source_path, is_computed_signal=True))
signal_manifest_filepath = os.path.join(output_dir, SIGNAL_MANIFEST_FILENAME)
with open_file(signal_manifest_filepath, 'w') as f:
f.write(signal_manifest.json(exclude_none=True, indent=2))
self._update_config(signals=[SignalConfig(path=source_path, signal=signal)])
log(f'Wrote signal output to {output_dir}')
@override
def compute_embedding(self,
embedding: str,
path: Path,
task_step_id: Optional[TaskStepId] = None) -> None:
source_path = normalize_path(path)
manifest = self.manifest()
if task_step_id is None:
# Make a dummy task step so we report progress via tqdm.
task_step_id = ('', 0)
signal = get_signal_by_type(embedding, TextEmbeddingSignal)()
signal_col = Column(path=source_path, alias='value', signal_udf=signal)
select_rows_result = self.select_rows([ROWID, signal_col],
task_step_id=task_step_id,
resolve_span=True)
df = select_rows_result.df()
values = df['value']
enriched_path = _col_destination_path(signal_col, is_computed_signal=True)
output_dir = os.path.join(self.dataset_path, _signal_dir(enriched_path))
signal_schema = create_signal_schema(signal, source_path, manifest.data_schema)
write_embeddings_to_disk(
vector_store=self.vector_store, rowids=df[ROWID], signal_items=values, output_dir=output_dir)
del select_rows_result, df, values
gc.collect()
signal_manifest = SignalManifest(
files=[],
data_schema=signal_schema,
signal=signal,
enriched_path=source_path,
parquet_id=make_parquet_id(signal, source_path, is_computed_signal=True),
vector_store=self.vector_store)
signal_manifest_filepath = os.path.join(output_dir, SIGNAL_MANIFEST_FILENAME)
with open_file(signal_manifest_filepath, 'w') as f:
f.write(signal_manifest.json(exclude_none=True, indent=2))
self._update_config(embeddings=[EmbeddingConfig(path=source_path, embedding=embedding)])
log(f'Wrote embedding index to {output_dir}')
@override
def delete_signal(self, signal_path: Path) -> None:
signal_path = normalize_path(signal_path)
manifest = self.manifest()
if not manifest.data_schema.has_field(signal_path):
raise ValueError(f'Unknown signal path: {signal_path}')
output_dir = os.path.join(self.dataset_path, _signal_dir(signal_path))
shutil.rmtree(output_dir, ignore_errors=True)
def _validate_filters(self, filters: Sequence[Filter], col_aliases: dict[str, PathTuple],
manifest: DatasetManifest) -> None:
for filter in filters:
if filter.path[0] in col_aliases:
# This is a filter on a column alias, which is always allowed.
continue
current_field = Field(fields=manifest.data_schema.fields)
if filter.path == (ROWID,):
return
for path_part in filter.path:
if path_part == VALUE_KEY:
if not current_field.dtype:
raise ValueError(f'Unable to filter on path {filter.path}. The field has no value.')
continue
if current_field.fields:
if path_part not in current_field.fields:
raise ValueError(f'Unable to filter on path {filter.path}. '
f'Path part "{path_part}" not found in the dataset.')
current_field = current_field.fields[str(path_part)]
continue
elif current_field.repeated_field:
current_field = current_field.repeated_field
continue
else:
raise ValueError(f'Unable to filter on path {filter.path}. '
f'Path part "{path_part}" is not defined on a primitive value.')
while current_field.repeated_field:
current_field = current_field.repeated_field
filter.path = (*filter.path, PATH_WILDCARD)
if not current_field.dtype:
raise ValueError(f'Unable to filter on path {filter.path}. The field has no value.')
def _validate_udfs(self, udf_cols: Sequence[Column], source_schema: Schema) -> None:
for col in udf_cols:
path = col.path
# Signal transforms must operate on a leaf field.
leaf = source_schema.leafs.get(path)
if not leaf or not leaf.dtype:
raise ValueError(f'Leaf "{path}" not found in dataset. '
'Signal transforms must operate on a leaf field.')
# Signal transforms must have the same dtype as the leaf field.
signal = cast(Signal, col.signal_udf)
if not signal_type_supports_dtype(signal.input_type, leaf.dtype):
raise ValueError(f'Leaf "{path}" has dtype "{leaf.dtype}" which is not supported '
f'by "{signal.key()}" with signal input type "{signal.input_type}".')
def _validate_selection(self, columns: Sequence[Column], select_schema: Schema) -> None:
# Validate all the columns and make sure they exist in the `select_schema`.
for column in columns:
current_field = Field(fields=select_schema.fields)
path = column.path
if path == (ROWID,):
return
for path_part in path:
if path_part == VALUE_KEY:
if not current_field.dtype:
raise ValueError(f'Unable to select path {path}. The field that has no value.')
continue
if current_field.fields:
if path_part not in current_field.fields:
raise ValueError(f'Unable to select path {path}. '
f'Path part "{path_part}" not found in the dataset.')
current_field = current_field.fields[path_part]
continue
elif current_field.repeated_field:
if path_part.isdigit():
raise ValueError(f'Unable to select path {path}. Selecting a specific index of '
'a repeated field is currently not supported.')
if path_part != PATH_WILDCARD:
raise ValueError(f'Unable to select path {path}. '
f'Path part "{path_part}" should be a wildcard.')
current_field = current_field.repeated_field
elif not current_field.dtype:
raise ValueError(f'Unable to select path {path}. '
f'Path part "{path_part}" is not defined on a primitive value.')
def _validate_columns(self, columns: Sequence[Column], source_schema: Schema,
select_schema: Schema) -> None:
udf_cols = [col for col in columns if col.signal_udf]
self._validate_udfs(udf_cols, source_schema)
self._validate_selection(columns, select_schema)
def _validate_sort_path(self, path: PathTuple, schema: Schema) -> None:
current_field = Field(fields=schema.fields)
if path == (ROWID,):
return
for path_part in path:
if path_part == VALUE_KEY:
if not current_field.dtype:
raise ValueError(f'Unable to sort by path {path}. The field that has no value.')
continue
if current_field.fields:
if path_part not in current_field.fields:
raise ValueError(f'Unable to sort by path {path}. '
f'Path part "{path_part}" not found in the dataset.')
current_field = current_field.fields[path_part]
continue
elif current_field.repeated_field:
if path_part.isdigit():
raise ValueError(f'Unable to sort by path {path}. Selecting a specific index of '
'a repeated field is currently not supported.')
if path_part != PATH_WILDCARD:
raise ValueError(f'Unable to sort by path {path}. '
f'Path part "{path_part}" should be a wildcard.')
current_field = current_field.repeated_field
elif not current_field.dtype:
raise ValueError(f'Unable to sort by path {path}. '
f'Path part "{path_part}" is not defined on a primitive value.')
if not current_field.dtype:
raise ValueError(f'Unable to sort by path {path}. The field has no value.')
@override
@functools.cache # Cache stats for leaf paths since we ask on every dataset page refresh.
def stats(self, leaf_path: Path) -> StatsResult:
if not leaf_path:
raise ValueError('leaf_path must be provided')
path = normalize_path(leaf_path)
manifest = self.manifest()
leaf = manifest.data_schema.get_field(path)
# Find the inner-most leaf in case this field is repeated.
while leaf.repeated_field:
leaf = leaf.repeated_field
path = (*path, PATH_WILDCARD)
if not leaf.dtype:
raise ValueError(f'Leaf "{path}" not found in dataset')
duckdb_path = self._leaf_path_to_duckdb_path(path, manifest.data_schema)
inner_select = _select_sql(
duckdb_path, flatten=True, unnest=True, span_from=self._get_span_from(path, manifest))
# Compute the average length of text fields.
avg_text_length: Optional[int] = None
if leaf.dtype in (DataType.STRING, DataType.STRING_SPAN):
avg_length_query = f"""
SELECT avg(length(val))
FROM (SELECT {inner_select} AS val FROM t) USING SAMPLE {SAMPLE_AVG_TEXT_LENGTH};
"""
row = self._query(avg_length_query)[0]
if row[0] is not None:
avg_text_length = int(row[0])
total_count_query = f'SELECT count(val) FROM (SELECT {inner_select} as val FROM t)'
total_count = int(self._query(total_count_query)[0][0])
# Compute approximate count by sampling the data to avoid OOM.
if avg_text_length and avg_text_length > MAX_TEXT_LEN_DISTINCT_COUNT:
# Assume that every text field is unique.
approx_count_distinct = manifest.num_items
elif leaf.dtype == DataType.BOOLEAN:
approx_count_distinct = 2
else:
sample_size = TOO_MANY_DISTINCT
approx_count_query = f"""
SELECT approx_count_distinct(val) as approxCountDistinct
FROM (SELECT {inner_select} AS val FROM t) USING SAMPLE {sample_size};
"""
row = self._query(approx_count_query)[0]
approx_count_distinct = int(row[0])
# Adjust the counts for the sample size.
factor = max(1, total_count / sample_size)
approx_count_distinct = round(approx_count_distinct * factor)
result = StatsResult(
path=path,
total_count=total_count,
approx_count_distinct=approx_count_distinct,
avg_text_length=avg_text_length)
# Compute min/max values for ordinal leafs, without sampling the data.
if is_ordinal(leaf.dtype):
min_max_query = f"""
SELECT MIN(val) AS minVal, MAX(val) AS maxVal
FROM (SELECT {inner_select} as val FROM t)
{'WHERE NOT isnan(val)' if is_float(leaf.dtype) else ''}
"""
row = self._query(min_max_query)[0]
result.min_val, result.max_val = row
return result
@override
def select_groups(
self,
leaf_path: Path,
filters: Optional[Sequence[FilterLike]] = None,
sort_by: Optional[GroupsSortBy] = GroupsSortBy.COUNT,
sort_order: Optional[SortOrder] = SortOrder.DESC,
limit: Optional[int] = None,
bins: Optional[Union[Sequence[Bin], Sequence[float]]] = None) -> SelectGroupsResult:
if not leaf_path:
raise ValueError('leaf_path must be provided')
path = normalize_path(leaf_path)
manifest = self.manifest()
leaf = manifest.data_schema.get_field(path)
# Find the inner-most leaf in case this field is repeated.
while leaf.repeated_field:
leaf = leaf.repeated_field
path = (*path, PATH_WILDCARD)
if not leaf.dtype:
raise ValueError(f'Leaf "{path}" not found in dataset')
inner_val = 'inner_val'
outer_select = inner_val
# Normalize the bins to be `list[Bin]`.
named_bins = _normalize_bins(bins or leaf.bins)
stats = self.stats(leaf_path)
leaf_is_float = is_float(leaf.dtype)
leaf_is_integer = is_integer(leaf.dtype)
if not leaf.categorical and (leaf_is_float or leaf_is_integer):
if named_bins is None:
# Auto-bin.
named_bins = _auto_bins(stats, NUM_AUTO_BINS)
sql_bounds = []
for label, start, end in named_bins:
if start is None:
start = cast(float, "'-Infinity'")
if end is None:
end = cast(float, "'Infinity'")
sql_bounds.append(f"('{label}', {start}, {end})")
bin_index_col = 'col0'
bin_min_col = 'col1'
bin_max_col = 'col2'
is_nan_filter = f'NOT isnan({inner_val}) AND' if leaf_is_float else ''
# We cast the field to `double` so binning works for both `float` and `int` fields.
outer_select = f"""(
SELECT {bin_index_col} FROM (
VALUES {', '.join(sql_bounds)}
) WHERE {is_nan_filter}
{inner_val}::DOUBLE >= {bin_min_col} AND {inner_val}::DOUBLE < {bin_max_col}
)"""
else:
if stats.approx_count_distinct >= dataset.TOO_MANY_DISTINCT:
return SelectGroupsResult(too_many_distinct=True, counts=[], bins=named_bins)
count_column = 'count'
value_column = 'value'
limit_query = f'LIMIT {limit}' if limit else ''
duckdb_path = self._leaf_path_to_duckdb_path(path, manifest.data_schema)
inner_select = _select_sql(
duckdb_path, flatten=True, unnest=True, span_from=self._get_span_from(path, manifest))
filters, _ = self._normalize_filters(filters, col_aliases={}, udf_aliases={}, manifest=manifest)
filter_queries = self._create_where(manifest, filters, searches=[])
where_query = ''
if filter_queries:
where_query = f"WHERE {' AND '.join(filter_queries)}"
query = f"""
SELECT {outer_select} AS {value_column}, COUNT() AS {count_column}
FROM (SELECT {inner_select} AS {inner_val} FROM t {where_query})
GROUP BY {value_column}
ORDER BY {sort_by} {sort_order}
{limit_query}
"""
df = self._query_df(query)
counts = list(df.itertuples(index=False, name=None))
if is_temporal(leaf.dtype):
# Replace any NaT with None and pd.Timestamp to native datetime objects.
counts = [(None if pd.isnull(val) else val.to_pydatetime(), count) for val, count in counts]
return SelectGroupsResult(too_many_distinct=False, counts=counts, bins=named_bins)
def _topk_udf_to_sort_by(
self,
udf_columns: list[Column],
sort_by: list[PathTuple],
limit: Optional[int],
sort_order: Optional[SortOrder],
) -> Optional[Column]:
if (sort_order != SortOrder.DESC) or (not limit) or (not sort_by):
return None
if len(sort_by) < 1:
return None
primary_sort_by = sort_by[0]
udf_cols_to_sort_by = [
udf_col for udf_col in udf_columns if udf_col.alias == primary_sort_by[0] or
_path_contains(_col_destination_path(udf_col), primary_sort_by)
]
if not udf_cols_to_sort_by:
return None
udf_col = udf_cols_to_sort_by[0]
if udf_col.signal_udf and not isinstance(udf_col.signal_udf, VectorSignal):
return None
return udf_col
def _normalize_columns(self, columns: Optional[Sequence[ColumnId]], schema: Schema,
combine_columns: bool) -> list[Column]:
"""Normalizes the columns to a list of `Column` objects."""
cols = [column_from_identifier(col) for col in columns or []]
star_in_cols = any(col.path == (PATH_WILDCARD,) for col in cols)
if not cols or star_in_cols:
# Select all columns.
cols.extend([Column((name,)) for name in schema.fields.keys() if name != ROWID])
if not combine_columns:
# Select all the signal top-level fields.
for path, field in schema.all_fields:
if field.signal:
cols.append(Column(path))
if star_in_cols:
cols = [col for col in cols if col.path != (PATH_WILDCARD,)]
return cols
def _merge_sorts(self, search_udfs: list[DuckDBSearchUDF], sort_by: Optional[Sequence[Path]],
sort_order: Optional[SortOrder]) -> list[SortResult]:
# True when the user has explicitly sorted by the alias of a search UDF (e.g. in ASC order).
is_explicit_search_sort = False
for sort_by_path in sort_by or []:
for search_udf in search_udfs:
if column_paths_match(sort_by_path, search_udf.output_path):
is_explicit_search_sort = True
break
sort_results: list[SortResult] = []
if sort_by and not is_explicit_search_sort:
if not sort_order:
raise ValueError('`sort_order` is required when `sort_by` is specified.')
# If the user has explicitly set a sort by, and it's not a search UDF alias, override.
sort_results = [
SortResult(path=normalize_path(sort_by), order=sort_order) for sort_by in sort_by if sort_by
]
else:
search_udfs_with_sort = [search_udf for search_udf in search_udfs if search_udf.sort]
if search_udfs_with_sort:
# Override the sort by the last search sort order when the user hasn't provided an
# explicit sort order.
last_search_udf = search_udfs_with_sort[-1]
assert last_search_udf.sort, 'Expected search UDFs with sort to have a sort.'
udf_sort_path, udf_sort_order = last_search_udf.sort
sort_results = [
SortResult(
path=udf_sort_path,
order=sort_order or udf_sort_order,
search_index=len(search_udfs_with_sort) - 1)
]
return sort_results
@override
def select_rows(self,
columns: Optional[Sequence[ColumnId]] = None,
searches: Optional[Sequence[Search]] = None,
filters: Optional[Sequence[FilterLike]] = None,
sort_by: Optional[Sequence[Path]] = None,
sort_order: Optional[SortOrder] = SortOrder.DESC,
limit: Optional[int] = None,
offset: Optional[int] = 0,
task_step_id: Optional[TaskStepId] = None,
resolve_span: bool = False,
combine_columns: bool = False,
user: Optional[UserInfo] = None) -> SelectRowsResult:
manifest = self.manifest()
cols = self._normalize_columns(columns, manifest.data_schema, combine_columns)
offset = offset or 0
schema = manifest.data_schema
if combine_columns:
schema = self.select_rows_schema(
columns, sort_by, sort_order, searches, combine_columns=True).data_schema
self._validate_columns(cols, manifest.data_schema, schema)
self._normalize_searches(searches, manifest)
search_udfs = self._search_udfs(searches, manifest)
cols.extend([search_udf.udf for search_udf in search_udfs])
udf_columns = [col for col in cols if col.signal_udf]
temp_rowid_selected = False
for col in cols:
if col.path == (ROWID,):
temp_rowid_selected = False
break
if isinstance(col.signal_udf, VectorSignal):
temp_rowid_selected = True
if temp_rowid_selected:
cols.append(Column(ROWID))
# Set extra information on any concept signals.
for udf_col in udf_columns:
if isinstance(udf_col.signal_udf, (ConceptSignal, ConceptLabelsSignal)):
# Concept are access controlled so we tell it about the user.
udf_col.signal_udf.set_user(user)
# Decide on the exact sorting order.
sort_results = self._merge_sorts(search_udfs, sort_by, sort_order)
sort_by = cast(list[PathTuple],
[(sort.alias,) if sort.alias else sort.path for sort in sort_results])
# Choose the first sort order as we only support a single sort order for now.
sort_order = sort_results[0].order if sort_results else None
col_aliases: dict[str, PathTuple] = {col.alias: col.path for col in cols if col.alias}
udf_aliases: dict[str, PathTuple] = {
col.alias: col.path for col in cols if col.signal_udf and col.alias
}
path_to_udf_col_name: dict[PathTuple, str] = {}
for col in cols:
if col.signal_udf:
alias = col.alias or _unique_alias(col)
dest_path = _col_destination_path(col)
path_to_udf_col_name[dest_path] = alias
# Filtering and searching.
where_query = ''
filters, udf_filters = self._normalize_filters(filters, col_aliases, udf_aliases, manifest)
filter_queries = self._create_where(manifest, filters, searches)
if filter_queries:
where_query = f"WHERE {' AND '.join(filter_queries)}"
total_num_rows = manifest.num_items
con = self.con.cursor()
topk_udf_col = self._topk_udf_to_sort_by(udf_columns, sort_by, limit, sort_order)
if topk_udf_col:
path_keys: Optional[list[PathKey]] = None
if where_query:
# If there are filters, we need to send rowids to the top k query.
df = con.execute(f'SELECT {ROWID} FROM t {where_query}').df()
total_num_rows = len(df)
# Convert rowids to path keys.
path_keys = [(rowid,) for rowid in df[ROWID]]
if path_keys is not None and len(path_keys) == 0:
where_query = 'WHERE false'
else:
topk_signal = cast(VectorSignal, topk_udf_col.signal_udf)
# The input is an embedding.
vector_index = self._get_vector_db_index(topk_signal.embedding, topk_udf_col.path)
k = (limit or 0) + offset
path_id = f'{self.namespace}/{self.dataset_name}:{topk_udf_col.path}'
with DebugTimer(f'Computing topk on {path_id} with embedding "{topk_signal.embedding}" '
f'and vector store "{vector_index._vector_store.name}"'):
topk = topk_signal.vector_compute_topk(k, vector_index, path_keys)
topk_rowids = list(dict.fromkeys([cast(str, rowid) for (rowid, *_), _ in topk]))
# Update the offset to account for the number of unique rowids.
offset = len(dict.fromkeys([cast(str, rowid) for (rowid, *_), _ in topk[:offset]]))
# Ignore all the other filters and filter DuckDB results only by the top k rowids.
rowid_filter = Filter(path=(ROWID,), op='in', value=topk_rowids)
filter_query = self._create_where(manifest, [rowid_filter])[0]
where_query = f'WHERE {filter_query}'
# Map a final column name to a list of temporary namespaced column names that need to be merged.
columns_to_merge: dict[str, dict[str, Column]] = {}
temp_column_to_offset_column: dict[str, tuple[str, Field]] = {}
select_queries: list[str] = []
for column in cols:
path = column.path
# If the signal is vector-based, we don't need to select the actual data, just the rowids
# plus an arbitrarily nested array of `None`s`.
empty = bool(column.signal_udf and schema.get_field(path).dtype == DataType.EMBEDDING)
select_sqls: list[str] = []
final_col_name = column.alias or _unique_alias(column)
if final_col_name not in columns_to_merge:
columns_to_merge[final_col_name] = {}
duckdb_paths = self._column_to_duckdb_paths(column, schema, combine_columns)
span_from = self._get_span_from(path, manifest) if resolve_span or column.signal_udf else None
for parquet_id, duckdb_path in duckdb_paths:
sql = _select_sql(
duckdb_path, flatten=False, unnest=False, empty=empty, span_from=span_from)
temp_column_name = (
final_col_name if len(duckdb_paths) == 1 else f'{final_col_name}/{parquet_id}')
select_sqls.append(f'{sql} AS {_escape_string_literal(temp_column_name)}')
columns_to_merge[final_col_name][temp_column_name] = column
if column.signal_udf and span_from and _schema_has_spans(column.signal_udf.fields()):
sql = _select_sql(duckdb_path, flatten=False, unnest=False, empty=empty, span_from=None)
temp_offset_column_name = f'{temp_column_name}/offset'
temp_offset_column_name = temp_offset_column_name.replace("'", "\\'")
select_sqls.append(f'{sql} AS {_escape_string_literal(temp_offset_column_name)}')
temp_column_to_offset_column[temp_column_name] = (temp_offset_column_name,
column.signal_udf.fields())
# `select_sqls` can be empty if this column points to a path that will be created by a UDF.
if select_sqls:
select_queries.append(', '.join(select_sqls))
sort_sql_before_udf: list[str] = []
sort_sql_after_udf: list[str] = []
for path in sort_by:
# We only allow sorting by nodes with a value.
first_subpath = str(path[0])
rest_of_path = path[1:]
signal_alias = '.'.join(map(str, path))
udf_path = _path_to_udf_duckdb_path(path, path_to_udf_col_name)
if not udf_path:
# Re-route the path if it starts with an alias by pointing it to the actual path.
if first_subpath in col_aliases:
path = (*col_aliases[first_subpath], *rest_of_path)
self._validate_sort_path(path, schema)
path = self._leaf_path_to_duckdb_path(path, schema)
else:
path = udf_path
sort_sql = _select_sql(path, flatten=True, unnest=False)
has_repeated_field = any(subpath == PATH_WILDCARD for subpath in path)
if has_repeated_field:
sort_sql = (f'list_min({sort_sql})'
if sort_order == SortOrder.ASC else f'list_max({sort_sql})')
# Separate sort columns into two groups: those that need to be sorted before and after UDFs.
if udf_path:
sort_sql_after_udf.append(sort_sql)
else:
sort_sql_before_udf.append(sort_sql)
order_query = ''
if sort_sql_before_udf:
order_query = (f'ORDER BY {", ".join(sort_sql_before_udf)} '
f'{cast(SortOrder, sort_order).value}')
limit_query = ''
if limit:
if topk_udf_col:
limit_query = f'LIMIT {limit + offset}'
elif sort_sql_after_udf:
limit_query = ''
else:
limit_query = f'LIMIT {limit} OFFSET {offset}'
if not topk_udf_col and where_query:
total_num_rows = cast(tuple,
con.execute(f'SELECT COUNT(*) FROM t {where_query}').fetchone())[0]
# Fetch the data from DuckDB.
df = con.execute(f"""
SELECT {', '.join(select_queries)} FROM t
{where_query}
{order_query}
{limit_query}
""").df()
df = _replace_nan_with_none(df)
# Run UDFs on the transformed columns.
for udf_col in udf_columns:
signal = cast(Signal, udf_col.signal_udf)
signal_alias = udf_col.alias or _unique_alias(udf_col)
temp_signal_cols = columns_to_merge[signal_alias]
if len(temp_signal_cols) != 1:
raise ValueError(
f'Unable to compute signal {signal.name}. Signal UDFs only operate on leafs, but got '
f'{len(temp_signal_cols)} underlying columns that contain data related to {udf_col.path}.'
)
signal_column = list(temp_signal_cols.keys())[0]
input = df[signal_column]
path_id = f'{self.namespace}/{self.dataset_name}:{udf_col.path}'
with DebugTimer(f'Computing signal "{signal.name}" on {path_id}'):
signal.setup()
step_description = f'Computing {signal.key()} on {path_id}'
if isinstance(signal, VectorSignal):
embedding_signal = signal
vector_store = self._get_vector_db_index(embedding_signal.embedding, udf_col.path)
flat_keys = list(flatten_keys(df[ROWID], input))
signal_out = sparse_to_dense_compute(
iter(flat_keys), lambda keys: embedding_signal.vector_compute(keys, vector_store))
# Add progress.
if task_step_id is not None:
signal_out = progress(
signal_out,
task_step_id=task_step_id,
estimated_len=len(flat_keys),
step_description=step_description)
df[signal_column] = deep_unflatten(signal_out, input)
else:
num_rich_data = count_primitives(input)
flat_input = cast(Iterator[Optional[RichData]], deep_flatten(input))
signal_out = sparse_to_dense_compute(
flat_input, lambda x: signal.compute(cast(Iterable[RichData], x)))
# Add progress.
if task_step_id is not None:
signal_out = progress(
signal_out,
task_step_id=task_step_id,
estimated_len=num_rich_data,
step_description=step_description)
signal_out_list = list(signal_out)
if signal_column in temp_column_to_offset_column:
offset_column_name, field = temp_column_to_offset_column[signal_column]
nested_spans: Iterable[Item] = df[offset_column_name]
flat_spans = deep_flatten(nested_spans)
for span, item in zip(flat_spans, signal_out_list):
_offset_any_span(cast(int, span[VALUE_KEY][TEXT_SPAN_START_FEATURE]), item, field)
if len(signal_out_list) != num_rich_data:
raise ValueError(
f'The signal generated {len(signal_out_list)} values but the input data had '
f"{num_rich_data} values. This means the signal either didn't generate a "
'"None" for a sparse output, or generated too many items.')
df[signal_column] = deep_unflatten(signal_out_list, input)
signal.teardown()
if not df.empty and (udf_filters or sort_sql_after_udf):
# Re-upload the udf outputs to duckdb so we can filter/sort on them.
rel = con.from_df(df)
if udf_filters:
udf_filter_queries = self._create_where(manifest, udf_filters)
if udf_filter_queries:
rel = rel.filter(' AND '.join(udf_filter_queries))
total_num_rows = cast(tuple, rel.count('*').fetchone())[0]
if sort_sql_after_udf:
if not sort_order:
raise ValueError('`sort_order` is required when `sort_by` is specified.')
rel = rel.order(f'{", ".join(sort_sql_after_udf)} {sort_order.value}')
if limit:
rel = rel.limit(limit, offset)
df = _replace_nan_with_none(rel.df())
if temp_rowid_selected:
del df[ROWID]
del columns_to_merge[ROWID]
if combine_columns:
all_columns: dict[str, Column] = {}
for col_dict in columns_to_merge.values():
all_columns.update(col_dict)
columns_to_merge = {'*': all_columns}
for offset_column, _ in temp_column_to_offset_column.values():
del df[offset_column]
for final_col_name, temp_columns in columns_to_merge.items():
for temp_col_name, column in temp_columns.items():
if combine_columns:
dest_path = _col_destination_path(column)
spec = _split_path_into_subpaths_of_lists(dest_path)
df[temp_col_name] = wrap_in_dicts(df[temp_col_name], spec)
# If the temp col name is the same as the final name, we can skip merging. This happens when
# we select a source leaf column.
if temp_col_name == final_col_name:
continue
if final_col_name not in df:
df[final_col_name] = df[temp_col_name]
else:
df[final_col_name] = merge_series(df[final_col_name], df[temp_col_name])
del df[temp_col_name]
con.close()
if combine_columns:
# Since we aliased every column to `*`, the object with have only '*' as the key. We need to
# elevate the all the columns under '*'.
df = pd.DataFrame.from_records(df['*'])
return SelectRowsResult(df, total_num_rows)
@override
def select_rows_schema(self,
columns: Optional[Sequence[ColumnId]] = None,
sort_by: Optional[Sequence[Path]] = None,
sort_order: Optional[SortOrder] = None,
searches: Optional[Sequence[Search]] = None,
combine_columns: bool = False) -> SelectRowsSchemaResult:
"""Returns the schema of the result of `select_rows` above with the same arguments."""
if not combine_columns:
raise NotImplementedError(
'select_rows_schema with combine_columns=False is not yet supported.')
manifest = self.manifest()
cols = self._normalize_columns(columns, manifest.data_schema, combine_columns)
self._normalize_searches(searches, manifest)
search_udfs = self._search_udfs(searches, manifest)
cols.extend([search_udf.udf for search_udf in search_udfs])
udfs: list[SelectRowsSchemaUDF] = []
col_schemas: list[Schema] = []
for col in cols:
dest_path = _col_destination_path(col)
if col.signal_udf:
udfs.append(SelectRowsSchemaUDF(path=dest_path, alias=col.alias))
field = col.signal_udf.fields()
field.signal = col.signal_udf.dict()
elif manifest.data_schema.has_field(dest_path):
field = manifest.data_schema.get_field(dest_path)
else:
# This column might refer to an output of a udf. We postpone validation to later.
continue
col_schemas.append(_make_schema_from_path(dest_path, field))
sort_results = self._merge_sorts(search_udfs, sort_by, sort_order)
search_results = [
SearchResultInfo(search_path=search_udf.search_path, result_path=search_udf.output_path)
for search_udf in search_udfs
]
new_schema = merge_schemas(col_schemas)
# Now that we have the new schema, we can validate all the column selections.
self._validate_columns(cols, manifest.data_schema, new_schema)
return SelectRowsSchemaResult(
data_schema=new_schema, udfs=udfs, search_results=search_results, sorts=sort_results or None)
@override
def media(self, item_id: str, leaf_path: Path) -> MediaResult:
raise NotImplementedError('Media is not yet supported for the DuckDB implementation.')
def _get_span_from(self, path: PathTuple, manifest: DatasetManifest) -> Optional[PathTuple]:
leafs = manifest.data_schema.leafs
# Remove the value key so we can check the dtype from leafs.
span_path = path[:-1] if path[-1] == VALUE_KEY else path
is_span = (span_path in leafs and leafs[span_path].dtype == DataType.STRING_SPAN)
return _derived_from_path(path, manifest.data_schema) if is_span else None
def _leaf_path_to_duckdb_path(self, leaf_path: PathTuple, schema: Schema) -> PathTuple:
((_, duckdb_path),) = self._column_to_duckdb_paths(
Column(leaf_path), schema, combine_columns=False, select_leaf=True)
return duckdb_path
def _column_to_duckdb_paths(self,
column: Column,
schema: Schema,
combine_columns: bool,
select_leaf: bool = False) -> list[tuple[str, PathTuple]]:
path = column.path
parquet_manifests: list[Union[SourceManifest, SignalManifest]] = [
self._source_manifest, *self._signal_manifests
]
duckdb_paths: list[tuple[str, PathTuple]] = []
source_has_path = False
select_leaf = select_leaf or column.signal_udf is not None
if path == (ROWID,):
return [('source', path)]
for m in parquet_manifests:
if not m.files:
continue
# Skip this parquet file if it doesn't contain the path.
if not schema_contains_path(m.data_schema, path):
continue
if isinstance(m, SourceManifest):
source_has_path = True
if isinstance(m, SignalManifest) and source_has_path and not combine_columns:
# Skip this signal if the source already has the path and we are not combining columns.
continue
# Skip this parquet file if the path doesn't have a dtype.
if select_leaf and not m.data_schema.get_field(path).dtype:
continue
duckdb_path = path
parquet_id = 'source'
if isinstance(m, SignalManifest):
duckdb_path = (m.parquet_id, *path[1:])
parquet_id = m.parquet_id
duckdb_paths.append((parquet_id, duckdb_path))
if not duckdb_paths:
# This path is probably a result of a udf. Make sure the result schema contains it.
if not schema.has_field(path):
raise ValueError(f'Invalid path "{path}": No manifest contains path. Valid paths: '
f'{list(schema.leafs.keys())}')
return duckdb_paths
def _normalize_filters(self, filter_likes: Optional[Sequence[FilterLike]],
col_aliases: dict[str, PathTuple], udf_aliases: dict[str, PathTuple],
manifest: DatasetManifest) -> tuple[list[Filter], list[Filter]]:
"""Normalize `FilterLike` to `Filter` and split into filters on source and filters on UDFs."""
filter_likes = filter_likes or []
filters: list[Filter] = []
udf_filters: list[Filter] = []
for filter in filter_likes:
# Normalize `FilterLike` to `Filter`.
if not isinstance(filter, Filter):
if len(filter) == 3:
path, op, value = filter # type: ignore
elif len(filter) == 2:
path, op = filter # type: ignore
value = None
else:
raise ValueError(f'Invalid filter: {filter}. Must be a tuple with 2 or 3 elements.')
filter = Filter(path=normalize_path(path), op=op, value=value)
if str(filter.path[0]) in udf_aliases:
udf_filters.append(filter)
else:
filters.append(filter)
self._validate_filters(filters, col_aliases, manifest)
return filters, udf_filters
def _normalize_searches(self, searches: Optional[Sequence[Search]],
manifest: DatasetManifest) -> None:
"""Validate searches."""
if not searches:
return
for search in searches:
search.path = normalize_path(search.path)
field = manifest.data_schema.get_field(search.path)
if field.dtype != DataType.STRING:
raise ValueError(f'Invalid search path: {search.path}. '
f'Must be a string field, got dtype {field.dtype}')
def _search_udfs(self, searches: Optional[Sequence[Search]],
manifest: DatasetManifest) -> list[DuckDBSearchUDF]:
searches = searches or []
"""Create a UDF for each search for finding the location of the text with spans."""
search_udfs: list[DuckDBSearchUDF] = []
for search in searches:
search_path = normalize_path(search.path)
if search.type == 'keyword':
udf = Column(path=search_path, signal_udf=SubstringSignal(query=search.query))
search_udfs.append(
DuckDBSearchUDF(
udf=udf,
search_path=search_path,
output_path=(*_col_destination_path(udf), PATH_WILDCARD)))
elif search.type == 'semantic' or search.type == 'concept':
embedding = search.embedding
if not embedding:
raise ValueError(f'Please provide an embedding for semantic search. Got search: {search}')
try:
manifest.data_schema.get_field((*search_path, embedding))
except Exception as e:
raise ValueError(
f'Embedding {embedding} has not been computed. '
f'Please compute the embedding index before issuing a {search.type} query.') from e
search_signal: Optional[Signal] = None
if search.type == 'semantic':
search_signal = SemanticSimilaritySignal(query=search.query, embedding=search.embedding)
elif search.type == 'concept':
search_signal = ConceptSignal(
namespace=search.concept_namespace,
concept_name=search.concept_name,
embedding=search.embedding)
# Add the label UDF.
concept_labels_signal = ConceptLabelsSignal(
namespace=search.concept_namespace, concept_name=search.concept_name)
concept_labels_udf = Column(path=search_path, signal_udf=concept_labels_signal)
search_udfs.append(
DuckDBSearchUDF(
udf=concept_labels_udf,
search_path=search_path,
output_path=_col_destination_path(concept_labels_udf),
sort=None))
udf = Column(path=search_path, signal_udf=search_signal)
output_path = _col_destination_path(udf)
search_udfs.append(
DuckDBSearchUDF(
udf=udf,
search_path=search_path,
output_path=_col_destination_path(udf),
sort=((*output_path, PATH_WILDCARD, 'score'), SortOrder.DESC)))
else:
raise ValueError(f'Unknown search operator {search.type}.')
return search_udfs
def _create_where(self,
manifest: DatasetManifest,
filters: list[Filter],
searches: Optional[Sequence[Search]] = []) -> list[str]:
if not filters and not searches:
return []
searches = searches or []
sql_filter_queries: list[str] = []
# Add search where queries.
for search in searches:
duckdb_path = self._leaf_path_to_duckdb_path(
normalize_path(search.path), manifest.data_schema)
select_str = _select_sql(duckdb_path, flatten=False, unnest=False)
if search.type == 'keyword':
sql_op = 'ILIKE'
query_val = _escape_like_value(search.query)
elif search.type == 'semantic' or search.type == 'concept':
# Semantic search and concepts don't yet filter.
continue
else:
raise ValueError(f'Unknown search operator {search.type}.')
filter_query = f'{select_str} {sql_op} {query_val}'
sql_filter_queries.append(filter_query)
# Add filter where queries.
for f in filters:
duckdb_path = self._leaf_path_to_duckdb_path(f.path, manifest.data_schema)
select_str = _select_sql(
duckdb_path, flatten=True, unnest=False, span_from=self._get_span_from(f.path, manifest))
is_array = any(subpath == PATH_WILDCARD for subpath in f.path)
nan_filter = ''
field = manifest.data_schema.get_field(f.path)
filter_nans = field.dtype and is_float(field.dtype)
if f.op in BINARY_OPS:
sql_op = BINARY_OP_TO_SQL[cast(BinaryOp, f.op)]
filter_val = cast(FeatureValue, f.value)
if isinstance(filter_val, str):
filter_val = _escape_string_literal(filter_val)
elif isinstance(filter_val, bytes):
filter_val = _bytes_to_blob_literal(filter_val)
else:
filter_val = str(filter_val)
if is_array:
nan_filter = 'NOT isnan(x) AND' if filter_nans else ''
filter_query = (f'len(list_filter({select_str}, '
f'x -> {nan_filter} x {sql_op} {filter_val})) > 0')
else:
nan_filter = f'NOT isnan({select_str}) AND' if filter_nans else ''
filter_query = f'{nan_filter} {select_str} {sql_op} {filter_val}'
elif f.op in UNARY_OPS:
if f.op == 'exists':
filter_query = f'len({select_str}) > 0' if is_array else f'{select_str} IS NOT NULL'
else:
raise ValueError(f'Unary op: {f.op} is not yet supported')
elif f.op in LIST_OPS:
if f.op == 'in':
filter_list_val = cast(FeatureListValue, f.value)
if not isinstance(filter_list_val, list):
raise ValueError('filter with array value can only use the IN comparison')
wrapped_filter_val = [f"'{part}'" for part in filter_list_val]
filter_val = f'({", ".join(wrapped_filter_val)})'
filter_query = f'{select_str} IN {filter_val}'
else:
raise ValueError(f'List op: {f.op} is not yet supported')
else:
raise ValueError(f'Invalid filter op: {f.op}')
sql_filter_queries.append(filter_query)
return sql_filter_queries
def _execute(self, query: str) -> duckdb.DuckDBPyConnection:
"""Execute a query in duckdb."""
# FastAPI is multi-threaded so we have to create a thread-specific connection cursor to allow
# these queries to be thread-safe.
local_con = self.con.cursor()
if not env('DEBUG', False):
return local_con.execute(query)
# Debug mode.
log('Executing:')
log(query)
with DebugTimer('Query'):
return local_con.execute(query)
def _query(self, query: str) -> list[tuple]:
result = self._execute(query)
rows = result.fetchall()
result.close()
return rows
def _query_df(self, query: str) -> pd.DataFrame:
"""Execute a query that returns a data frame."""
result = self._execute(query)
df = _replace_nan_with_none(result.df())
result.close()
return df
def _path_to_col(self, path: Path, quote_each_part: bool = True) -> str:
"""Convert a path to a column name."""
if isinstance(path, str):
path = (path,)
return '.'.join([
f'{_escape_col_name(path_comp)}' if quote_each_part else str(path_comp) for path_comp in path
])
def _get_selection(self, columns: Optional[Sequence[ColumnId]] = None) -> str:
"""Get the selection clause for download a dataset."""
manifest = self.manifest()
cols = self._normalize_columns(columns, manifest.data_schema, combine_columns=False)
schema = manifest.data_schema
self._validate_columns(cols, manifest.data_schema, schema)
select_queries: list[str] = []
for column in cols:
col_name = column.alias or _unique_alias(column)
duckdb_paths = self._column_to_duckdb_paths(column, schema, combine_columns=False)
if not duckdb_paths:
raise ValueError(f'Cannot download path {column.path} which does not exist in the dataset.')
if len(duckdb_paths) > 1:
raise ValueError(
f'Cannot download path {column.path} which spans multiple parquet files: {duckdb_paths}')
_, duckdb_path = duckdb_paths[0]
sql = _select_sql(duckdb_path, flatten=False, unnest=False)
select_queries.append(f'{sql} AS {_escape_string_literal(col_name)}')
return ', '.join(select_queries)
@override
def to_json(self,
filepath: Union[str, pathlib.Path],
jsonl: bool = True,
columns: Optional[Sequence[ColumnId]] = None) -> None:
selection = self._get_selection(columns)
self._execute(f"COPY (SELECT {selection} FROM t) TO '{filepath}' "
f"(FORMAT JSON, ARRAY {'FALSE' if jsonl else 'TRUE'})")
log(f'Dataset exported to {filepath}')
@override
def to_pandas(self, columns: Optional[Sequence[ColumnId]] = None) -> pd.DataFrame:
selection = self._get_selection(columns)
return self._query_df(f'SELECT {selection} FROM t')
@override
def to_csv(self,
filepath: Union[str, pathlib.Path],
columns: Optional[Sequence[ColumnId]] = None) -> None:
selection = self._get_selection(columns)
self._execute(f"COPY (SELECT {selection} FROM t) TO '{filepath}' (FORMAT CSV, HEADER)")
log(f'Dataset exported to {filepath}')
@override
def to_parquet(self,
filepath: Union[str, pathlib.Path],
columns: Optional[Sequence[ColumnId]] = None) -> None:
selection = self._get_selection(columns)
self._execute(f"COPY (SELECT {selection} FROM t) TO '{filepath}' (FORMAT PARQUET)")
log(f'Dataset exported to {filepath}')
def _escape_string_literal(string: str) -> str:
string = string.replace("'", "''")
return f"'{string}'"
def _escape_col_name(col_name: str) -> str:
col_name = col_name.replace('"', '""')
return f'"{col_name}"'
def _escape_like_value(value: str) -> str:
value = value.replace('%', '\\%').replace('_', '\\_')
return f"'%{value}%' ESCAPE '\\'"
def _inner_select(sub_paths: list[PathTuple],
inner_var: Optional[str] = None,
empty: bool = False,
span_from: Optional[PathTuple] = None) -> str:
"""Recursively generate the inner select statement for a list of sub paths."""
current_sub_path = sub_paths[0]
lambda_var = inner_var + 'x' if inner_var else 'x'
if not inner_var:
lambda_var = 'x'
inner_var = _escape_col_name(current_sub_path[0])
current_sub_path = current_sub_path[1:]
# Select the path inside structs. E.g. x['a']['b']['c'] given current_sub_path = [a, b, c].
path_key = inner_var + ''.join([f'[{_escape_string_literal(p)}]' for p in current_sub_path])
if len(sub_paths) == 1:
if span_from:
derived_col = _select_sql(span_from, flatten=False, unnest=False)
path_key = (f'{derived_col}[{path_key}.{VALUE_KEY}.{TEXT_SPAN_START_FEATURE}+1:'
f'{path_key}.{VALUE_KEY}.{TEXT_SPAN_END_FEATURE}]')
return 'NULL' if empty else path_key
return (f'list_transform({path_key}, {lambda_var} -> '
f'{_inner_select(sub_paths[1:], lambda_var, empty, span_from)})')
def _split_path_into_subpaths_of_lists(leaf_path: PathTuple) -> list[PathTuple]:
"""Split a path into a subpath of lists.
E.g. [a, b, c, *, d, *, *] gets splits [[a, b, c], [d], [], []].
"""
sub_paths: list[PathTuple] = []
offset = 0
while offset <= len(leaf_path):
new_offset = leaf_path.index(PATH_WILDCARD,
offset) if PATH_WILDCARD in leaf_path[offset:] else len(leaf_path)
sub_path = leaf_path[offset:new_offset]
sub_paths.append(sub_path)
offset = new_offset + 1
return sub_paths
def _select_sql(path: PathTuple,
flatten: bool,
unnest: bool,
empty: bool = False,
span_from: Optional[PathTuple] = None) -> str:
"""Create a select column for a path.
Args:
path: A path to a feature. E.g. ['a', 'b', 'c'].
flatten: Whether to flatten the result.
unnest: Whether to unnest the result.
empty: Whether to return an empty list (used for embedding signals that don't need the data).
span_from: The path this span is derived from. If specified, the span will be resolved
to a substring of the original string.
"""
sub_paths = _split_path_into_subpaths_of_lists(path)
selection = _inner_select(sub_paths, None, empty, span_from)
# We only flatten when the result of a nested list to avoid segfault.
is_result_nested_list = len(sub_paths) >= 3 # E.g. subPaths = [[a, b, c], *, *].
if flatten and is_result_nested_list:
selection = f'flatten({selection})'
# We only unnest when the result is a list. // E.g. subPaths = [[a, b, c], *].
is_result_a_list = len(sub_paths) >= 2
if unnest and is_result_a_list:
selection = f'unnest({selection})'
return selection
def read_source_manifest(dataset_path: str) -> SourceManifest:
"""Read the manifest file."""
with open_file(os.path.join(dataset_path, MANIFEST_FILENAME), 'r') as f:
return SourceManifest.parse_raw(f.read())
def _signal_dir(enriched_path: PathTuple) -> str:
"""Get the filename prefix for a signal parquet file."""
path_without_wildcards = (p for p in enriched_path if p != PATH_WILDCARD)
return os.path.join(*path_without_wildcards)
def split_column_name(column: str, split_name: str) -> str:
"""Get the name of a split column."""
return f'{column}.{split_name}'
def split_parquet_prefix(column_name: str, splitter_name: str) -> str:
"""Get the filename prefix for a split parquet file."""
return f'{column_name}.{splitter_name}'
def _bytes_to_blob_literal(bytes: bytes) -> str:
"""Convert bytes to a blob literal."""
escaped_hex = re.sub(r'(.{2})', r'\\x\1', bytes.hex())
return f"'{escaped_hex}'::BLOB"
class SignalManifest(BaseModel):
"""The manifest that describes a signal computation including schema and parquet files."""
# List of a parquet filepaths storing the data. The paths are relative to the manifest.
files: list[str]
# An identifier for this parquet table. Will be used as the view name in SQL.
parquet_id: str
data_schema: Schema
signal: Signal
# The column path that this signal is derived from.
enriched_path: PathTuple
# The name of the vector store. Present when the signal is an embedding.
vector_store: Optional[str] = None
@validator('signal', pre=True)
def parse_signal(cls, signal: dict) -> Signal:
"""Parse a signal to its specific subclass instance."""
return resolve_signal(signal)
def _merge_cells(dest_cell: Item, source_cell: Item) -> Item:
if source_cell is None or isinstance(source_cell, float) and math.isnan(source_cell):
# Nothing to merge here (missing value).
return dest_cell
if isinstance(dest_cell, dict):
if isinstance(source_cell, list):
raise ValueError(f'Failed to merge cells. Destination is a dict ({dest_cell!r}), '
f'but source is a list ({source_cell!r}).')
if isinstance(source_cell, dict):
res = {**dest_cell}
for key, value in source_cell.items():
res[key] = (value if key not in dest_cell else _merge_cells(dest_cell[key], value))
return res
else:
return {VALUE_KEY: source_cell, **dest_cell}
elif isinstance(dest_cell, list):
if not isinstance(source_cell, list):
raise ValueError('Failed to merge cells. Destination is a list, but source is not.')
return [
_merge_cells(dest_subcell, source_subcell)
for dest_subcell, source_subcell in zip(dest_cell, source_cell)
]
else:
# The destination is a primitive.
if isinstance(source_cell, list):
raise ValueError(f'Failed to merge cells. Destination is a primitive ({dest_cell!r}), '
f'but source is a list ({source_cell!r}).')
if isinstance(source_cell, dict):
return {VALUE_KEY: dest_cell, **source_cell}
else:
# Primitives can be merged together if they are equal. This can happen if a user selects a
# column that is the child of another.
# NOTE: This can be removed if we fix https://github.com/lilacai/lilac/issues/166.
if source_cell != dest_cell:
raise ValueError(f'Cannot merge source "{source_cell!r}" into destination "{dest_cell!r}"')
return dest_cell
def merge_series(destination: pd.Series, source: pd.Series) -> list[Item]:
"""Merge two series of values recursively."""
return _merge_cells(destination.tolist(), source.tolist())
def _unique_alias(column: Column) -> str:
"""Get a unique alias for a selection column."""
if column.signal_udf:
return make_parquet_id(column.signal_udf, column.path)
return '.'.join(map(str, column.path))
def _path_contains(parent_path: PathTuple, child_path: PathTuple) -> bool:
"""Check if a path contains another path."""
if len(parent_path) > len(child_path):
return False
return all(parent_path[i] == child_path[i] for i in range(len(parent_path)))
def _path_to_udf_duckdb_path(path: PathTuple,
path_to_udf_col_name: dict[PathTuple, str]) -> Optional[PathTuple]:
first_subpath, *rest_of_path = path
for parent_path, udf_col_name in path_to_udf_col_name.items():
# If the user selected udf(document.*.text) as "udf" and wanted to sort by "udf.len", we need to
# sort by "udf.*.len" where the "*" came from the fact that the udf was applied to a list of
# "text" fields.
wildcards = [x for x in parent_path if x == PATH_WILDCARD]
if _path_contains(parent_path, path):
return (udf_col_name, *wildcards, *path[len(parent_path):])
elif first_subpath == udf_col_name:
return (udf_col_name, *wildcards, *rest_of_path)
return None
def _col_destination_path(column: Column, is_computed_signal: Optional[bool] = False) -> PathTuple:
"""Get the destination path where the output of this selection column will be stored."""
source_path = column.path
if not column.signal_udf:
return source_path
signal_key = column.signal_udf.key(is_computed_signal=is_computed_signal)
# If we are enriching a value we should store the signal data in the value's parent.
if source_path[-1] == VALUE_KEY:
dest_path = (*source_path[:-1], signal_key)
else:
dest_path = (*source_path, signal_key)
return dest_path
def _root_column(manifest: SignalManifest) -> str:
"""Returns the root column of a signal manifest."""
field_keys = list(manifest.data_schema.fields.keys())
if len(field_keys) > 2:
raise ValueError('Expected at most two fields in signal manifest, '
f'the rowid and root this signal is enriching. Got {field_keys}.')
return next(filter(lambda field: field != ROWID, manifest.data_schema.fields.keys()))
def _derived_from_path(path: PathTuple, schema: Schema) -> PathTuple:
# Find the closest parent of `path` that is a signal root.
for i in reversed(range(len(path))):
sub_path = path[:i]
if schema.get_field(sub_path).signal is not None:
# Skip the signal name at the end to get the source path that was enriched.
return sub_path[:-1]
raise ValueError('Cannot find the source path for the enriched path: {path}')
def _make_schema_from_path(path: PathTuple, field: Field) -> Schema:
"""Returns a schema that contains only the given path."""
for sub_path in reversed(path):
if sub_path == PATH_WILDCARD:
field = Field(repeated_field=field)
else:
field = Field(fields={sub_path: field})
if not field.fields:
raise ValueError(f'Invalid path: {path}. Must contain at least one field name.')
return Schema(fields=field.fields)
def _replace_nan_with_none(df: pd.DataFrame) -> pd.DataFrame:
"""DuckDB returns np.nan for missing field in string column, replace with None for correctness."""
# TODO(https://github.com/duckdb/duckdb/issues/4066): Remove this once duckdb fixes upstream.
for col in df.columns:
if is_object_dtype(df[col]):
df[col].replace(np.nan, None, inplace=True)
return df
def _offset_any_span(offset: int, item: Item, schema: Field) -> None:
"""Offsets any spans inplace by the given parent offset."""
if schema.dtype == DataType.STRING_SPAN:
item = cast(dict, item)
item[VALUE_KEY][TEXT_SPAN_START_FEATURE] += offset
item[VALUE_KEY][TEXT_SPAN_END_FEATURE] += offset
if schema.fields:
item = cast(dict, item)
for key, sub_schema in schema.fields.items():
_offset_any_span(offset, item[key], sub_schema)
if schema.repeated_field:
item = cast(list, item)
for sub_item in item:
_offset_any_span(offset, sub_item, schema.repeated_field)
def _schema_has_spans(field: Field) -> bool:
if field.dtype and field.dtype == DataType.STRING_SPAN:
return True
if field.fields:
children_have_spans = any(_schema_has_spans(sub_field) for sub_field in field.fields.values())
if children_have_spans:
return True
if field.repeated_field:
return _schema_has_spans(field.repeated_field)
return False
def _normalize_bins(bins: Optional[Union[Sequence[Bin], Sequence[float]]]) -> Optional[list[Bin]]:
if bins is None:
return None
if not isinstance(bins[0], (float, int)):
return cast(list[Bin], bins)
named_bins: list[Bin] = []
for i in range(len(bins) + 1):
start = cast(float, bins[i - 1]) if i > 0 else None
end = cast(float, bins[i]) if i < len(bins) else None
named_bins.append((str(i), start, end))
return named_bins
def _auto_bins(stats: StatsResult, num_bins: int) -> list[Bin]:
min_val = cast(float, stats.min_val)
max_val = cast(float, stats.max_val)
bin_width = (max_val - min_val) / num_bins
bins: list[Bin] = []
for i in range(num_bins):
start = None if i == 0 else min_val + i * bin_width
end = None if i == num_bins - 1 else min_val + (i + 1) * bin_width
bins.append((str(i), start, end))
return bins
def get_config_filepath(namespace: str, dataset_name: str) -> str:
"""Gets the config yaml filepath."""
return os.path.join(get_dataset_output_dir(data_path(), namespace, dataset_name), CONFIG_FILENAME)
|