Spaces:
Runtime error
Runtime error
File size: 9,781 Bytes
bfc0ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""Utils for the python server."""
import asyncio
import functools
import itertools
import logging
import os
import pathlib
import re
import shutil
import threading
import time
import uuid
from asyncio import AbstractEventLoop
from concurrent.futures import Executor, ThreadPoolExecutor
from datetime import timedelta
from functools import partial, wraps
from typing import IO, Any, Awaitable, Callable, Iterable, Optional, TypeVar, Union
import numpy as np
import requests
import yaml
from google.cloud.storage import Blob, Client
from pydantic import BaseModel
from .env import data_path, env
from .schema import Path
GCS_PROTOCOL = 'gs://'
GCS_REGEX = re.compile(f'{GCS_PROTOCOL}(.*?)/(.*)')
GCS_COPY_CHUNK_SIZE = 1_000
IMAGES_DIR_NAME = 'images'
DATASETS_DIR_NAME = 'datasets'
@functools.cache
def _get_storage_client(thread_id: Optional[int] = None) -> Client:
# The storage client is not thread safe so we use a thread_id to make sure each thread gets a
# separate storage client.
del thread_id
return Client()
def _parse_gcs_path(filepath: str) -> tuple[str, str]:
# match a regular expression to extract the bucket and filename
if matches := GCS_REGEX.match(filepath):
bucket_name, object_name = matches.groups()
return bucket_name, object_name
raise ValueError(f'Failed to parse GCS path: {filepath}')
def _get_gcs_blob(filepath: str) -> Blob:
bucket_name, object_name = _parse_gcs_path(filepath)
storage_client = _get_storage_client(threading.get_ident())
bucket = storage_client.bucket(bucket_name)
return bucket.blob(object_name)
def open_file(filepath: str, mode: str = 'r') -> IO:
"""Open a file handle. It works with both GCS and local paths."""
if filepath.startswith(GCS_PROTOCOL):
blob = _get_gcs_blob(filepath)
return blob.open(mode)
write_mode = 'w' in mode
binary_mode = 'b' in mode
if write_mode:
base_path = os.path.dirname(filepath)
os.makedirs(base_path, exist_ok=True)
encoding = None if binary_mode else 'utf-8'
return open(filepath, mode=mode, encoding=encoding)
def download_http_files(filepaths: list[str]) -> list[str]:
"""Download files from HTTP(s) URLs."""
out_filepaths: list[str] = []
for filepath in filepaths:
if filepath.startswith(('http://', 'https://')):
tmp_filename = uuid.uuid4().hex
tmp_filepath = f'/tmp/{data_path()}/local_cache/{tmp_filename}'
log(f'Downloading from url {filepath} to {tmp_filepath}')
dl = requests.get(filepath, timeout=10000, allow_redirects=True)
with open_file(tmp_filepath, 'wb') as f:
f.write(dl.content)
filepath = tmp_filepath
out_filepaths.append(filepath)
return out_filepaths
def makedirs(dir_path: str) -> None:
"""Recursively makes the directories. It works with both GCS and local paths."""
if dir_path.startswith(GCS_PROTOCOL):
return
os.makedirs(dir_path, exist_ok=True)
def get_datasets_dir(base_dir: Union[str, pathlib.Path]) -> str:
"""Return the output directory that holds all datasets."""
return os.path.join(base_dir, DATASETS_DIR_NAME)
def get_dataset_output_dir(base_dir: Union[str, pathlib.Path], namespace: str,
dataset_name: str) -> str:
"""Return the output directory for a dataset."""
return os.path.join(get_datasets_dir(base_dir), namespace, dataset_name)
def get_lilac_cache_dir(base_dir: Union[str, pathlib.Path]) -> str:
"""Return the output directory for a dataset."""
return os.path.join(base_dir, '.cache', 'lilac')
class CopyRequest(BaseModel):
"""A request to copy a file from source to destination path. Used to copy media files to GCS."""
from_path: str
to_path: str
def copy_batch(copy_requests: list[CopyRequest]) -> None:
"""Copy a single item from a CopyRequest."""
storage_client = _get_storage_client(threading.get_ident())
with storage_client.batch():
for copy_request in copy_requests:
from_gcs = False
if GCS_REGEX.match(copy_request.from_path):
from_gcs = True
to_gcs = False
if GCS_REGEX.match(copy_request.to_path):
to_gcs = True
makedirs(os.path.dirname(copy_request.to_path))
# When both source and destination are local, use the shutil copy.
if not from_gcs and not to_gcs:
shutil.copyfile(copy_request.from_path, copy_request.to_path)
continue
from_bucket: Any = None
to_bucket: Any = None
from_gcs_blob: Any = None
to_object_name: Optional[str] = None
if from_gcs:
from_bucket_name, from_object_name = _parse_gcs_path(copy_request.from_path)
from_bucket = storage_client.bucket(from_bucket_name)
from_gcs_blob = from_bucket.blob(from_object_name)
if to_gcs:
to_bucket_name, to_object_name = _parse_gcs_path(copy_request.to_path)
to_bucket = storage_client.bucket(to_bucket_name)
if from_gcs and to_gcs:
from_bucket.copy_blob(from_gcs_blob, from_bucket, to_object_name)
elif from_gcs and not to_gcs:
from_gcs_blob.download_to_filename(copy_request.to_path)
elif not from_gcs and to_gcs:
to_gcs_blob = to_bucket.blob(to_object_name)
to_gcs_blob.upload_from_filename(copy_request.from_path)
def copy_files(copy_requests: Iterable[CopyRequest], input_gcs: bool, output_gcs: bool) -> None:
"""Copy media files from an input gcs path to an output gcs path."""
start_time = time.time()
chunk_size = 1
if output_gcs and input_gcs:
# When downloading or uploading locally, batching greatly slows down the parallelism as GCS
# batching with storage.batch() has no effect.
# When copying files locally, storage.batch() has no effect and it's better to run each copy in
# separate thread.
chunk_size = GCS_COPY_CHUNK_SIZE
batched_copy_requests = chunks(copy_requests, chunk_size)
with ThreadPoolExecutor() as executor:
executor.map(copy_batch, batched_copy_requests)
log(f'Copy took {time.time() - start_time} seconds.')
Tchunk = TypeVar('Tchunk')
def chunks(iterable: Iterable[Tchunk], size: int) -> Iterable[list[Tchunk]]:
"""Split a list of items into equal-sized chunks. The last chunk might be smaller."""
it = iter(iterable)
chunk = list(itertools.islice(it, size))
while chunk:
yield chunk
chunk = list(itertools.islice(it, size))
def delete_file(filepath: str) -> None:
"""Delete a file. It works for both GCS and local paths."""
if filepath.startswith(GCS_PROTOCOL):
blob = _get_gcs_blob(filepath)
blob.delete()
return
os.remove(filepath)
def file_exists(filepath: Union[str, pathlib.PosixPath]) -> bool:
"""Return true if the file exists. It works with both GCS and local paths."""
str_filepath = str(filepath)
if str_filepath.startswith(GCS_PROTOCOL):
return _get_gcs_blob(str_filepath).exists()
return os.path.exists(filepath)
def get_image_path(output_dir: str, path: Path, row_id: bytes) -> str:
"""Return the GCS file path to an image associated with a specific row."""
path_subdir = '_'.join([str(p) for p in path])
filename = row_id.hex()
return os.path.join(output_dir, IMAGES_DIR_NAME, path_subdir, filename)
Tout = TypeVar('Tout')
def async_wrap(func: Callable[..., Tout],
loop: Optional[AbstractEventLoop] = None,
executor: Optional[Executor] = None) -> Callable[..., Awaitable[Tout]]:
"""Wrap a sync function into an async function."""
@wraps(func)
async def run(*args: Any, **kwargs: Any) -> Any:
current_loop = loop or asyncio.get_running_loop()
pfunc: Callable = partial(func, *args, **kwargs)
return await current_loop.run_in_executor(executor, pfunc)
return run
def is_primitive(obj: object) -> bool:
"""Returns True if the object is a primitive."""
if isinstance(obj, (str, bytes, np.ndarray, int, float)):
return True
if isinstance(obj, Iterable):
return False
return True
def log(log_str: str) -> None:
"""Print and logs a message so it shows up in the logs on cloud."""
if env('DISABLE_LOGS'):
return
print(log_str)
logging.info(log_str)
class DebugTimer:
"""A context manager that prints the time elapsed in a block of code.
```py
with DebugTimer('dot product'):
np.dot(np.random.randn(1000), np.random.randn(1000))
```
$ dot product took 0.001s.
"""
def __init__(self, name: str) -> None:
self.name = name
def __enter__(self) -> 'DebugTimer':
"""Start a timer."""
self.start = time.perf_counter()
return self
def __exit__(self, *args: list[Any]) -> None:
"""Stop the timer and print the elapsed time."""
log(f'{self.name} took {(time.perf_counter() - self.start):.3f}s.')
def pretty_timedelta(delta: timedelta) -> str:
"""Pretty-prints a `timedelta`."""
seconds = delta.total_seconds()
days, seconds = divmod(seconds, 86400)
hours, seconds = divmod(seconds, 3600)
minutes, seconds = divmod(seconds, 60)
if days > 0:
return '%dd%dh%dm%ds' % (days, hours, minutes, seconds)
elif hours > 0:
return '%dh%dm%ds' % (hours, minutes, seconds)
elif minutes > 0:
return '%dm%ds' % (minutes, seconds)
else:
return '%ds' % (seconds,)
def to_yaml(input: dict) -> str:
"""Convert a dictionary to a pretty yaml representation."""
return yaml.dump(input, default_flow_style=None)
def get_hf_dataset_repo_id(hf_org: str, hf_space_name: str, namespace: str,
dataset_name: str) -> str:
"""Returns the repo name for a given dataset. This does not include the namespace."""
if hf_space_name == 'lilac':
# Don't include the space name for lilac datasets to shorten the linked dataset name.
return f'{hf_org}/{namespace}-{dataset_name}'
return f'{hf_org}/{hf_space_name}-{namespace}-{dataset_name}'
|