Spaces:
Runtime error
Runtime error
"""PaLM embeddings.""" | |
from typing import TYPE_CHECKING, Iterable, cast | |
import numpy as np | |
from tenacity import retry, stop_after_attempt, wait_random_exponential | |
from typing_extensions import override | |
from ..env import env | |
from ..schema import Item, RichData | |
from ..signal import TextEmbeddingSignal | |
from ..splitters.chunk_splitter import split_text | |
from .embedding import compute_split_embeddings | |
if TYPE_CHECKING: | |
import google.generativeai as palm | |
PALM_BATCH_SIZE = 1 # PaLM API only supports batch size 1. | |
NUM_PARALLEL_REQUESTS = 256 # Because batch size is 1, we can send many requests in parallel. | |
EMBEDDING_MODEL = 'models/embedding-gecko-001' | |
class PaLM(TextEmbeddingSignal): | |
"""Computes embeddings using PaLM's embedding API. | |
<br>**Important**: This will send data to an external server! | |
<br>To use this signal, you must get a PaLM API key from | |
[makersuite.google.com](https://makersuite.google.com/app/apikey) and add it to your .env.local. | |
""" | |
name = 'palm' | |
display_name = 'PaLM Embeddings' | |
_model: 'palm.generate_embeddings' | |
def setup(self) -> None: | |
api_key = env('PALM_API_KEY') | |
if not api_key: | |
raise ValueError('`PALM_API_KEY` environment variable not set.') | |
try: | |
import google.generativeai as palm | |
palm.configure(api_key=api_key) | |
self._model = palm.generate_embeddings | |
except ImportError: | |
raise ImportError('Could not import the "google.generativeai" python package. ' | |
'Please install it with `pip install google-generativeai`.') | |
def compute(self, docs: Iterable[RichData]) -> Iterable[Item]: | |
"""Compute embeddings for the given documents.""" | |
def embed_fn(texts: list[str]) -> list[np.ndarray]: | |
assert len(texts) == 1, 'PaLM API only supports batch size 1.' | |
response = self._model(model=EMBEDDING_MODEL, text=texts[0]) | |
return [np.array(response['embedding'], dtype=np.float32)] | |
docs = cast(Iterable[str], docs) | |
split_fn = split_text if self._split else None | |
yield from compute_split_embeddings( | |
docs, PALM_BATCH_SIZE, embed_fn, split_fn, num_parallel_requests=NUM_PARALLEL_REQUESTS) | |