nsthorat-lilac's picture
Duplicate from lilacai/nikhil_staging
bfc0ec6
raw
history blame
11.1 kB
"""Manage FastAPI background tasks."""
import asyncio
import functools
import time
import traceback
import uuid
from datetime import datetime, timedelta
from enum import Enum
from types import TracebackType
from typing import (
Any,
Awaitable,
Callable,
Coroutine,
Iterable,
Iterator,
Optional,
TypeVar,
Union,
cast,
)
import dask
import psutil
from dask import config as cfg
from dask.distributed import Client
from distributed import Future, get_client, get_worker, wait
from pydantic import BaseModel, parse_obj_as
from tqdm import tqdm
from .utils import log, pretty_timedelta
# Disable the heartbeats of the dask workers to avoid dying after computer goes to sleep.
cfg.set({'distributed.scheduler.worker-ttl': None})
TaskId = str
# ID for the step of a task.
TaskStepId = tuple[str, int]
Task = Union[Callable[..., Any], Callable[..., Awaitable[Any]]]
class TaskStatus(str, Enum):
"""Enum holding a tasks status."""
PENDING = 'pending'
COMPLETED = 'completed'
ERROR = 'error'
class TaskStepInfo(BaseModel):
"""Information about a step of the task.."""
progress: Optional[float] = None
description: Optional[str] = None
details: Optional[str] = None
class TaskInfo(BaseModel):
"""Metadata about a task."""
name: str
status: TaskStatus
progress: Optional[float] = None
message: Optional[str] = None
details: Optional[str] = None
# The current step's progress.
step_progress: Optional[float] = None
# A task may have multiple progress indicators, e.g. for chained signals that compute 3 signals.
steps: Optional[list[TaskStepInfo]] = None
description: Optional[str] = None
start_timestamp: str
end_timestamp: Optional[str] = None
error: Optional[str] = None
class TaskManifest(BaseModel):
"""Information for tasks that are running or completed."""
tasks: dict[str, TaskInfo]
progress: Optional[float] = None
STEPS_LOG_KEY = 'steps'
class TaskManager:
"""Manage FastAPI background tasks."""
_tasks: dict[str, TaskInfo] = {}
_futures: list[Future] = []
def __init__(self, dask_client: Optional[Client] = None) -> None:
"""By default, use a dask multi-processing client.
A user can pass in a dask client to use a different executor.
"""
# Set dasks workers to be non-daemonic so they can spawn child processes if they need to. This
# is particularly useful for signals that use libraries with multiprocessing support.
dask.config.set({'distributed.worker.daemon': False})
total_memory_gb = psutil.virtual_memory().total / (1024**3)
self._dask_client = dask_client or Client(
asynchronous=True, memory_limit=f'{total_memory_gb} GB')
async def _update_tasks(self) -> None:
for task_id, task in self._tasks.items():
if task.status == TaskStatus.COMPLETED:
continue
step_events = cast(Any, self._dask_client.get_events(_progress_event_topic(task_id)))
# This allows us to work with both sync and async clients.
if not isinstance(step_events, tuple):
step_events = await step_events
if step_events:
_, log_message = step_events[-1]
steps = parse_obj_as(list[TaskStepInfo], log_message[STEPS_LOG_KEY])
task.steps = steps
if steps:
cur_step = 0
for i, step in enumerate(reversed(steps)):
if step.progress is not None:
cur_step = len(steps) - i - 1
break
task.details = steps[cur_step].details
task.step_progress = steps[cur_step].progress
task.progress = (sum([step.progress or 0.0 for step in steps])) / len(steps)
# Don't show an indefinite jump if there are multiple steps.
if cur_step > 0 and task.step_progress is None:
task.step_progress = 0.0
task.message = f'Step {cur_step+1}/{len(steps)}'
if steps[cur_step].description:
task.message += f': {steps[cur_step].description}'
else:
task.progress = None
async def manifest(self) -> TaskManifest:
"""Get all tasks."""
await self._update_tasks()
tasks_with_progress = [
task.progress
for task in self._tasks.values()
if task.progress and task.status != TaskStatus.COMPLETED
]
return TaskManifest(
tasks=self._tasks,
progress=sum(tasks_with_progress) / len(tasks_with_progress) if tasks_with_progress else None)
def wait(self) -> None:
"""Wait until all tasks are completed."""
if self._futures:
wait(self._futures)
def task_id(self, name: str, description: Optional[str] = None) -> TaskId:
"""Create a unique ID for a task."""
task_id = uuid.uuid4().hex
self._tasks[task_id] = TaskInfo(
name=name,
status=TaskStatus.PENDING,
progress=None,
description=description,
start_timestamp=datetime.now().isoformat())
return task_id
def _set_task_completed(self, task_id: TaskId, task_future: Future) -> None:
end_timestamp = datetime.now().isoformat()
self._tasks[task_id].end_timestamp = end_timestamp
elapsed = datetime.fromisoformat(end_timestamp) - datetime.fromisoformat(
self._tasks[task_id].start_timestamp)
elapsed_formatted = pretty_timedelta(elapsed)
if task_future.status == 'error':
self._tasks[task_id].status = TaskStatus.ERROR
tb = traceback.format_tb(cast(TracebackType, task_future.traceback()))
e = cast(Exception, task_future.exception())
self._tasks[task_id].error = f'{e}: \n{tb}'
raise e
else:
# This runs in dask callback thread, so we have to make a new event loop.
loop = asyncio.new_event_loop()
loop.run_until_complete(self._update_tasks())
for step in self._tasks[task_id].steps or []:
step.progress = 1.0
self._tasks[task_id].status = TaskStatus.COMPLETED
self._tasks[task_id].progress = 1.0
self._tasks[task_id].message = f'Completed in {elapsed_formatted}'
log(f'Task completed "{task_id}": "{self._tasks[task_id].name}" in '
f'{elapsed_formatted}.')
def execute(self, task_id: str, task: Task, *args: Any) -> None:
"""Execute a task."""
log(f'Scheduling task "{task_id}": "{self._tasks[task_id].name}".')
task_info = self._tasks[task_id]
task_future = self._dask_client.submit(
functools.partial(_execute_task, task, task_info, task_id), *args, key=task_id)
task_future.add_done_callback(
lambda task_future: self._set_task_completed(task_id, task_future))
self._futures.append(task_future)
async def stop(self) -> None:
"""Stop the task manager and close the dask client."""
await cast(Coroutine, self._dask_client.close())
@functools.cache
def task_manager() -> TaskManager:
"""The global singleton for the task manager."""
return TaskManager()
def _execute_task(task: Task, task_info: TaskInfo, task_id: str, *args: Any) -> None:
annotations = cast(dict, get_worker().state.tasks[task_id].annotations)
annotations['task_info'] = task_info
task(*args)
def _progress_event_topic(task_id: TaskId) -> str:
return f'{task_id}_progress'
TProgress = TypeVar('TProgress')
def progress(it: Union[Iterator[TProgress], Iterable[TProgress]],
task_step_id: Optional[TaskStepId],
estimated_len: Optional[int],
step_description: Optional[str] = None,
emit_every_s: float = 1.) -> Iterator[TProgress]:
"""An iterable wrapper that emits progress and yields the original iterable."""
if not task_step_id or task_step_id[0] == '':
yield from tqdm(it, desc=step_description, total=estimated_len)
return
task_id, step_id = task_step_id
steps = get_worker_steps(task_id)
if not steps:
steps = [TaskStepInfo(description=step_description, progress=0.0)]
elif len(steps) <= step_id:
# If the step given exceeds the length of the last step, add a new step.
steps.append(TaskStepInfo(description=step_description, progress=0.0))
else:
steps[step_id].description = step_description
steps[step_id].progress = 0.0
set_worker_steps(task_id, steps)
estimated_len = max(1, estimated_len) if estimated_len else None
annotations = cast(dict, get_worker().state.tasks[task_id].annotations)
task_info: TaskInfo = annotations['task_info']
it_idx = 0
start_time = time.time()
last_emit = time.time() - emit_every_s
with tqdm(it, desc=task_info.name, total=estimated_len) as tq:
for t in tq:
cur_time = time.time()
if estimated_len and cur_time - last_emit > emit_every_s:
it_per_sec = tq.format_dict['rate'] or 0.0
set_worker_task_progress(
task_step_id=task_step_id,
it_idx=it_idx,
elapsed_sec=tq.format_dict['elapsed'] or 0.0,
it_per_sec=it_per_sec or 0.0,
estimated_total_sec=((estimated_len) / it_per_sec if it_per_sec else 0),
estimated_len=estimated_len)
last_emit = cur_time
yield t
it_idx += 1
total_time = time.time() - start_time
set_worker_task_progress(
task_step_id=task_step_id,
it_idx=estimated_len if estimated_len else it_idx,
elapsed_sec=total_time,
it_per_sec=(estimated_len or it_idx) / total_time,
estimated_total_sec=total_time,
estimated_len=estimated_len or it_idx)
def set_worker_steps(task_id: TaskId, steps: list[TaskStepInfo]) -> None:
"""Sets up worker steps. Use to provide task step descriptions before they compute."""
get_worker().log_event(
_progress_event_topic(task_id), {STEPS_LOG_KEY: [step.dict() for step in steps]})
def get_worker_steps(task_id: TaskId) -> list[TaskStepInfo]:
"""Gets the last worker steps."""
events = cast(Any, get_client().get_events(_progress_event_topic(task_id)))
if not events or not events[-1]:
return []
(_, last_event) = events[-1]
last_info = last_event.get(STEPS_LOG_KEY)
return [TaskStepInfo(**step_info) for step_info in last_info]
def set_worker_task_progress(task_step_id: TaskStepId, it_idx: int, elapsed_sec: float,
it_per_sec: float, estimated_total_sec: float,
estimated_len: int) -> None:
"""Updates a task step with a progress between 0 and 1.
This method does not exist on the TaskManager as it is meant to be a standalone method used by
workers running tasks on separate processes so does not have access to task manager state.
"""
progress = float(it_idx) / estimated_len
task_id, step_id = task_step_id
steps = get_worker_steps(task_id)
if len(steps) <= step_id:
raise ValueError(f'No step with idx {step_id} exists. Got steps: {steps}')
steps[step_id].progress = progress
# 1748/1748 [elapsed 00:16<00:00, 106.30 ex/s]
elapsed = f'{pretty_timedelta(timedelta(seconds=elapsed_sec))}'
if it_idx != estimated_len:
# Only show estimated when in progress.
elapsed = f'{elapsed} < {pretty_timedelta(timedelta(seconds=estimated_total_sec))}'
steps[step_id].details = (f'{it_idx:,}/{estimated_len:,} '
f'[{elapsed}, {it_per_sec:,.2f} ex/s]')
set_worker_steps(task_id, steps)