Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import time | |
from datetime import datetime | |
import folium | |
import pandas as pd | |
import requests | |
import streamlit as st | |
from folium import plugins | |
from huggingface_hub import HfApi | |
from streamlit_folium import st_folium | |
from src.text_content import ( | |
COLOR_MAPPING, | |
CREDITS_TEXT, | |
HEADERS_MAPPING, | |
ICON_MAPPING, | |
INTRO_TEXT_AR, | |
INTRO_TEXT_EN, | |
INTRO_TEXT_FR, | |
LOGO, | |
REVIEW_TEXT, | |
REVIEW_TEXT_2, | |
SLOGAN, | |
) | |
from src.utils import init_map, parse_gg_sheet | |
TOKEN = os.environ.get("HF_TOKEN", None) | |
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708" | |
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765" | |
api = HfApi(TOKEN) | |
# Initialize Streamlit Config | |
st.set_page_config(layout="wide", initial_sidebar_state="collapsed") | |
# Initialize States | |
if "sleep_time" not in st.session_state: | |
st.session_state.sleep_time = 2 | |
if "auto_refresh" not in st.session_state: | |
st.session_state.auto_refresh = False | |
# Session for Requests | |
session = requests.Session() | |
auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh) | |
if auto_refresh: | |
number = st.sidebar.number_input( | |
"Refresh rate in seconds", value=st.session_state.sleep_time | |
) | |
st.session_state.sleep_time = number | |
# Utility functions | |
def parse_latlng_from_link(url): | |
try: | |
# extract latitude and longitude from gmaps link | |
if "@" not in url: | |
resp = session.head(url, allow_redirects=True) | |
url = resp.url | |
latlng = url.split("@")[1].split(",")[0:2] | |
return [float(latlng[0]), float(latlng[1])] | |
except Exception as e: | |
return None | |
def parse_gg_sheet_interventions(url): | |
url = url.replace("edit#gid=", "export?format=csv&gid=") | |
print(url) | |
df = pd.read_csv(url, on_bad_lines="skip") | |
return df.assign(latlng=df.iloc[:, 3].apply(parse_latlng_from_link)) | |
# Streamlit functions | |
def display_interventions(interventions_df, m): | |
"""Display NGO interventions on the map""" | |
for index, row in interventions_df.iterrows(): | |
status = ( | |
"Done ✅" | |
if row[interventions_df.columns[5]] | |
!= "Intervention prévue dans le futur / Planned future intervention" | |
else "Planned ⌛" | |
) | |
color_mk = ( | |
"green" | |
if row[interventions_df.columns[5]] | |
!= "Intervention prévue dans le futur / Planned future intervention" | |
else "pink" | |
) | |
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip() | |
org = row[interventions_df.columns[1]] | |
city = row[interventions_df.columns[9]] | |
date = row[interventions_df.columns[4]] | |
intervention_info = f"<b>Status:</b> {status}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>📅 Date:</b> {date}" | |
if row["latlng"] is None: | |
continue | |
folium.Marker( | |
location=row["latlng"], | |
tooltip=city, | |
popup=folium.Popup(intervention_info, max_width=300), | |
icon=folium.Icon(color=color_mk), | |
).add_to(m) | |
def show_requests(filtered_df, m): | |
"""Display victim requests on the map""" | |
for index, row in filtered_df.iterrows(): | |
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"] | |
long_lat = row[ | |
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175" | |
] | |
maps_url = f"https://maps.google.com/?q={long_lat}" | |
display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>' | |
icon_name = ICON_MAPPING.get(request_type, "info-sign") | |
if row["latlng"] is None: | |
continue | |
folium.Marker( | |
location=row["latlng"], | |
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"] | |
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"]) | |
else None, | |
popup=folium.Popup(display_text, max_width=300), | |
icon=folium.Icon( | |
color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name | |
), | |
).add_to(m) | |
def display_google_sheet_tables(data_url): | |
"""Display the google sheet tables for requests and interventions""" | |
st.markdown( | |
f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""", | |
unsafe_allow_html=True, | |
) | |
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False): | |
"""Display the dataframe in a table""" | |
col_1, col_2 = st.columns([1, 1]) | |
with col_1: | |
query = st.text_input( | |
"🔍 Search for information / بحث عن المعلومات", | |
key=f"search_requests_{int(search_id)}", | |
) | |
with col_2: | |
if search_id: | |
id_number = st.number_input( | |
"🔍 Search for an id / بحث عن رقم", | |
min_value=0, | |
max_value=len(filtered_df), | |
value=0, | |
step=1, | |
) | |
if status: | |
selected_status = st.selectbox( | |
"🗓️ Status / حالة", | |
["all / الكل", "Done / تم", "Planned / مخطط لها"], | |
key="status", | |
) | |
if query: | |
# Filtering the dataframe based on the query | |
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1) | |
display_df = df[mask] | |
else: | |
display_df = df | |
display_df = display_df.drop(drop_cols, axis=1) | |
if search_id and id_number: | |
display_df = display_df[display_df["id"] == id_number] | |
if status: | |
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it" | |
if selected_status == "Done / تم": | |
display_df = display_df[ | |
display_df[target] == "Intervention déjà passée / Past intevention" | |
] | |
elif selected_status == "Planned / مخطط لها": | |
display_df = display_df[ | |
display_df[target] != "Intervention déjà passée / Past intevention" | |
] | |
st.dataframe(display_df, height=500) | |
st.markdown( | |
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**" | |
) | |
def id_review_submission(): | |
"""Id review submission form""" | |
st.subheader("🔍 Review of requests") | |
st.markdown(REVIEW_TEXT) | |
st.markdown(REVIEW_TEXT_2) | |
id_to_review = st.number_input( | |
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1 | |
) | |
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة") | |
if st.button("Submit / أرسل"): | |
if reason_for_review == "": | |
st.error("Please enter a reason / الرجاء إدخال سبب") | |
else: | |
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt" | |
with open(filename, "w") as f: | |
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n") | |
api.upload_file( | |
path_or_fileobj=filename, | |
path_in_repo=filename, | |
repo_id="nt3awnou/review_requests", | |
repo_type="dataset", | |
) | |
st.success( | |
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال" | |
) | |
# Logo and Title | |
st.markdown(LOGO, unsafe_allow_html=True) | |
st.title("Nt3awnou نتعاونو ") | |
st.markdown(SLOGAN, unsafe_allow_html=True) | |
# Language tabs | |
st.sidebar.title("Language / اللغة") | |
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"]) | |
with tab_en: | |
st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True) | |
with tab_ar: | |
st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True) | |
with tab_fr: | |
st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True) | |
# Load data and initialize map with plugins | |
df = parse_gg_sheet(REQUESTS_URL) | |
interventions_df = parse_gg_sheet_interventions(INTERVENTIONS_URL) | |
m = init_map() | |
# Selection of requests | |
options = [ | |
"إغاثة", | |
"مساعدة طبية", | |
"مأوى", | |
"طعام وماء", | |
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)", | |
] | |
selected_options = [] | |
with tab_en: | |
st.markdown("👉 **Choose request type**") | |
with tab_ar: | |
st.markdown("👉 **اختر نوع الطلب**") | |
with tab_fr: | |
st.markdown("👉 **Choisissez le type de demande**") | |
col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4]) | |
cols = [col1, col2, col3, col4, col5] | |
for i, option in enumerate(options): | |
checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True) | |
if checked: | |
selected_options.append(option) | |
df["id"] = df.index | |
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].isin(selected_options)] | |
selected_headers = [HEADERS_MAPPING[request] for request in selected_options] | |
# Selection of interventions | |
show_interventions = st.checkbox( | |
"Display Interventions | عرض عمليات المساعدة | Afficher les interventions", | |
value=True, | |
) | |
if show_interventions: | |
display_interventions(interventions_df, m) | |
# Show requests | |
show_requests(filtered_df, m) | |
st_data = st_folium(m, use_container_width=True) | |
st.subheader("📝 **Table of requests / جدول الطلبات**") | |
# Requests table | |
drop_cols = [ | |
"(عند الامكان) رقم هاتف شخص موجود في عين المكان", | |
"الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا", | |
"GeoStamp", | |
"GeoCode", | |
"GeoAddress", | |
"Status", | |
] | |
display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True) | |
# Interventions table | |
st.subheader("📝 **Table of interventions / جدول التدخلات**") | |
display_dataframe( | |
interventions_df, | |
["Informations de Contact | Contact Information"], | |
INTERVENTIONS_URL, | |
search_id=False, | |
status=True, | |
) | |
# Submit an id for review | |
id_review_submission() | |
# Credits | |
st.markdown( | |
CREDITS_TEXT, | |
unsafe_allow_html=True, | |
) | |
if auto_refresh: | |
time.sleep(number) | |
st.experimental_rerun() | |