Spaces:
Runtime error
Runtime error
feat: a python script with functions used for processing and analysis of requests and interventions data
Browse files- src/data_analysis.py +242 -0
src/data_analysis.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains some functions used to analyze the data from requests and interventions.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import re
|
6 |
+
import datetime as dt
|
7 |
+
import pandas as pd
|
8 |
+
import plotly.express as px
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
from torch import Tensor
|
11 |
+
from transformers import AutoModel, AutoTokenizer
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
SUPPLIES_TAGS = {
|
16 |
+
'alimentation': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
17 |
+
'eau': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
18 |
+
'food': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
19 |
+
'water': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
20 |
+
'nourriture': 'ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
21 |
+
'medical': 'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
22 |
+
'médical': 'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
23 |
+
'doctor': 'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
24 |
+
'vêtements': 'VÊTEMENTS / CLOTHES / الملابس',
|
25 |
+
'clothes': 'VÊTEMENTS / CLOTHES / الملابس',
|
26 |
+
'secours': 'SECOURS / RESCUE / الإنقاذ',
|
27 |
+
'rescue': 'SECOURS / RESCUE / الإنقاذ',
|
28 |
+
'refuge': 'REFUGE / SHELTER / المأوى',
|
29 |
+
'shelter': 'REFUGE / SHELTER / المأوى',
|
30 |
+
'couvertures': 'COUVERTURES / COVERS / البطانيات',
|
31 |
+
'covers': 'COUVERTURES / COVERS / البطانيات',
|
32 |
+
'pharmaceuticals': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
33 |
+
'medicaments': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
34 |
+
'pharmacy': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
35 |
+
'medicine': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
36 |
+
'blankets': 'COUVERTURES / COVERS / البطانيات',
|
37 |
+
'tents': 'REFUGE / SHELTER / المأوى',
|
38 |
+
'couches': 'PHARMACEUTICALS / MEDICAMENTS / الأدوية'
|
39 |
+
}
|
40 |
+
|
41 |
+
SUPPLIES_NEEDS_CATEGORIES = ['ALIMENTATION ET EAU / FOOD AND WATER / الغذاء والماء',
|
42 |
+
'ASSISTANCE MÉDICALE / MEDICAL ASSISTANCE / المساعدة الطبية',
|
43 |
+
'VÊTEMENTS / CLOTHES / الملابس',
|
44 |
+
'SECOURS / RESCUE / الإنقاذ',
|
45 |
+
'REFUGE / SHELTER / المأوى',
|
46 |
+
'COUVERTURES / COVERS / البطانيات',
|
47 |
+
# 'KITCHEN TOOLS / USTENSILES DE CUISINE / أدوات المطبخ',
|
48 |
+
'PHARMACEUTICALS / MEDICAMENTS / الأدوية',
|
49 |
+
'OTHER']
|
50 |
+
|
51 |
+
TRANSLATION_DICT = {
|
52 |
+
'أغطية': 'covers',
|
53 |
+
'أسرة': 'beds',
|
54 |
+
'وسادات': 'pillows',
|
55 |
+
'مصابح': 'lamps',
|
56 |
+
'خيام': 'tents',
|
57 |
+
'ألعاب أطفال': 'toys',
|
58 |
+
'قليل من المواد الغذائية': 'food',
|
59 |
+
'افرشة': 'covers',
|
60 |
+
'جلباب': 'clothes',
|
61 |
+
'ملابس': 'clothes',
|
62 |
+
'لديهم كل شيء': 'unknown'
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
def clean_text(text):
|
67 |
+
"""
|
68 |
+
remove special characters from text
|
69 |
+
"""
|
70 |
+
pattern = re.compile(r'[\u200e\xa0()\u200f]')
|
71 |
+
cleaned_text = pattern.sub('', text)
|
72 |
+
return cleaned_text
|
73 |
+
|
74 |
+
|
75 |
+
def contains_arabic(text):
|
76 |
+
"""
|
77 |
+
check if the text contains arabic characters
|
78 |
+
"""
|
79 |
+
arabic_pattern = re.compile(r'[\u0600-\u06FF]+')
|
80 |
+
if type(text)!=str:
|
81 |
+
return False
|
82 |
+
return arabic_pattern.search(text) is not None
|
83 |
+
|
84 |
+
|
85 |
+
def arabic_to_latin_punctuation(text):
|
86 |
+
"""
|
87 |
+
replace arabic punctuation with latin punctuation
|
88 |
+
"""
|
89 |
+
punctuation_mapping = {
|
90 |
+
'،': ',',
|
91 |
+
'؛': ';',
|
92 |
+
'ـ': '_',
|
93 |
+
'؟': '?',
|
94 |
+
'٪': '%',
|
95 |
+
'٫': '.',
|
96 |
+
}
|
97 |
+
|
98 |
+
for arabic_punct, latin_punct in punctuation_mapping.items():
|
99 |
+
text = text.replace(arabic_punct, latin_punct)
|
100 |
+
|
101 |
+
return text
|
102 |
+
|
103 |
+
|
104 |
+
def plot_timeline(df: pd.DataFrame, today: dt.datetime, date_col: str):
|
105 |
+
"""Plot the timeline of requests and interventions.
|
106 |
+
"""
|
107 |
+
df_past = df[df[date_col]<=today.date()]
|
108 |
+
df_future = df[df[date_col]>today.date()]
|
109 |
+
|
110 |
+
count_past = (df_past
|
111 |
+
.groupby(date_col)
|
112 |
+
.size()
|
113 |
+
.rename('count')
|
114 |
+
.reset_index())
|
115 |
+
past_date_range = pd.date_range(start=min(count_past[date_col]),
|
116 |
+
end=today.date(),
|
117 |
+
freq='D')
|
118 |
+
count_past = (count_past
|
119 |
+
.set_index(date_col)
|
120 |
+
.reindex(past_date_range, fill_value=0)
|
121 |
+
.reset_index())
|
122 |
+
|
123 |
+
if len(df_future)>0:
|
124 |
+
count_future = df_future.groupby(date_col).size().rename('count').reset_index()
|
125 |
+
future_date_range = pd.date_range(start=today.date()+dt.timedelta(days=1),
|
126 |
+
end=max(count_future[date_col]),
|
127 |
+
freq='D')
|
128 |
+
count_future = (count_future
|
129 |
+
.set_index(date_col)
|
130 |
+
.reindex(future_date_range, fill_value=0)
|
131 |
+
.reset_index())
|
132 |
+
else:
|
133 |
+
count_future = pd.DataFrame()
|
134 |
+
|
135 |
+
bridge_date = today.date()
|
136 |
+
bridge_data = pd.DataFrame(
|
137 |
+
{'index': bridge_date, 'form_date':count_past.iloc[-1]['count']}, index=[0])
|
138 |
+
count_future = pd.concat([bridge_data, count_future], ignore_index=True)
|
139 |
+
|
140 |
+
# Plot
|
141 |
+
fig = go.Figure()
|
142 |
+
# past
|
143 |
+
fig.add_trace(go.Scatter(x=count_past['index'],
|
144 |
+
y=count_past['count'],
|
145 |
+
mode='lines',
|
146 |
+
name='Past Interventions',
|
147 |
+
line=dict(color='blue')))
|
148 |
+
# future
|
149 |
+
fig.add_trace(go.Scatter(x=count_future['index'],
|
150 |
+
y=count_future['count'],
|
151 |
+
mode='lines',
|
152 |
+
name='Future Interventions',
|
153 |
+
line=dict(color='orange')))
|
154 |
+
|
155 |
+
fig.add_vline(x=today.date(), line_dash="dash", line_color="black")
|
156 |
+
|
157 |
+
fig.update_layout(yaxis_title="#", xaxis_title='date')
|
158 |
+
return fig
|
159 |
+
|
160 |
+
|
161 |
+
def classify_supplies_rule_based(text: pd.DataFrame, keep_raw: bool = False):
|
162 |
+
""" Classifies text into supplies categories from SUPPLIES_TAGS
|
163 |
+
using a rule-based approach."""
|
164 |
+
classes = []
|
165 |
+
lowercase_text = text.lower() # case-insensitive matching
|
166 |
+
|
167 |
+
for keyword, category in SUPPLIES_TAGS.items():
|
168 |
+
if keyword in lowercase_text:
|
169 |
+
classes.append(category)
|
170 |
+
|
171 |
+
if keep_raw:
|
172 |
+
classes.append(lowercase_text)
|
173 |
+
|
174 |
+
elif not classes:
|
175 |
+
classes.append('OTHER')
|
176 |
+
|
177 |
+
return list(set(classes))
|
178 |
+
|
179 |
+
|
180 |
+
def classify_multilingual_field_e5(df: pd.DataFrame,
|
181 |
+
field_to_tag: str = 'supplies',
|
182 |
+
categories: list = SUPPLIES_NEEDS_CATEGORIES):
|
183 |
+
"""
|
184 |
+
Tag supplies/requests into categories using multilingual-e5-large model.
|
185 |
+
Returns a dataframe with a new column containing the list of predicted categories.
|
186 |
+
Requires CUDA
|
187 |
+
"""
|
188 |
+
def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
189 |
+
last_hidden = last_hidden_states.masked_fill(
|
190 |
+
~attention_mask[..., None].bool(), 0.0)
|
191 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
192 |
+
|
193 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large')
|
194 |
+
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large')
|
195 |
+
model.cuda()
|
196 |
+
|
197 |
+
# classify ar supplies
|
198 |
+
processed_df = df.copy()
|
199 |
+
values_to_classify = processed_df[field_to_tag]
|
200 |
+
|
201 |
+
mapped_inputs = dict()
|
202 |
+
|
203 |
+
for text in values_to_classify:
|
204 |
+
gt = [f"{s}" for s in categories]
|
205 |
+
qr = [f"{v}" for v in re.split("\.|,| و", text)]
|
206 |
+
input_texts = qr + gt
|
207 |
+
|
208 |
+
# Tokenize the input texts
|
209 |
+
batch_dict = tokenizer(
|
210 |
+
input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
211 |
+
batch_dict = {k: v.cuda() for k, v in batch_dict.items()}
|
212 |
+
|
213 |
+
outputs = model(**batch_dict)
|
214 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
215 |
+
|
216 |
+
# normalize embeddings
|
217 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
218 |
+
scores = (embeddings[:len(qr)] @ embeddings[len(qr):].T) * 100
|
219 |
+
|
220 |
+
mapped_inputs[text] = list(
|
221 |
+
set([categories[int(scores[i,:].argmax())] for i in range(len(qr))]))
|
222 |
+
|
223 |
+
processed_df.loc[values_to_classify.index, f'{field_to_tag}_category'] = list(
|
224 |
+
mapped_inputs.values())
|
225 |
+
|
226 |
+
return processed_df
|
227 |
+
|
228 |
+
|
229 |
+
def plot_categories_share(raw_df: pd.DataFrame,
|
230 |
+
today: dt.datetime,
|
231 |
+
field: str = 'supplies'):
|
232 |
+
"""
|
233 |
+
Plot the share of each category of requests/supplies.
|
234 |
+
"""
|
235 |
+
df = raw_df[[field, f'{field}_category']].explode(f'{field}_category')
|
236 |
+
pie_data = df.groupby(f'{field}_category', as_index=False).size().rename('n')
|
237 |
+
fig = px.pie(pie_data,
|
238 |
+
names=f'{field}_category',
|
239 |
+
values='n',
|
240 |
+
title=f'# per {field} category up till {today.date()}',
|
241 |
+
labels={f'{field}_category': f'{field}', 'n': '%'})
|
242 |
+
return fig
|