import streamlit as st from src.utils import add_latlng_col, parse_gg_sheet, parse_json_file, is_request_in_list import pandas as pd VERIFIED_REQUESTS_URL = st.secrets["VERIFIED_REQUESTS_URL"] REQUESTS_URL = st.secrets["REQUESTS_URL"] INTERVENTIONS_URL = st.secrets["INTERVENTIONS_URL"] DOUARS_URL = "data/regions.json" def load_data(show_unverified, selected_options, options): df = parse_gg_sheet(REQUESTS_URL) if show_unverified: df = add_latlng_col(df, process_column=15) interventions_df = parse_gg_sheet(INTERVENTIONS_URL) interventions_df = add_latlng_col(interventions_df, process_column="Automatic Extracted Coordinates") verified_df = parse_gg_sheet(VERIFIED_REQUESTS_URL) verified_df = add_latlng_col(verified_df, process_column="Automatic Extracted Coordinates") douar_df = parse_json_file(DOUARS_URL) # check if verified requests have been solved solved_verified_requests = verified_df[~pd.isnull(verified_df["Status"])] verified_df = verified_df[pd.isnull(verified_df["Status"])] len_requests = len(df) len_interventions = len(interventions_df) len_solved_verified_requests = len(solved_verified_requests) df["id"] = df.index # Needed to display request id verified_df["id"] = verified_df.index # Needed to display request id # keep rows with at least one request in selected_options filtered_df = df[ df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].apply(lambda x: is_request_in_list(x, selected_options, options)) ] filtered_verified_df = verified_df[ verified_df["Help Details"].apply(lambda x: is_request_in_list(x, selected_options, options)) ] return ( df, filtered_df, interventions_df, verified_df, filtered_verified_df, solved_verified_requests, douar_df, len_requests, len_interventions, len_solved_verified_requests, ) def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False, show_link=True): """Display the dataframe in a table""" col_1, col_2 = st.columns([1, 1]) # has df's first row df_hash = hash(df.iloc[0].to_string()) with col_1: query = st.text_input("🔍 Search for information / بحث عن المعلومات", key=f"query_{df_hash}") with col_2: if search_id: id_number = st.number_input( "🔍 Search for an id / بحث عن رقم", min_value=0, # max_value=len(df), value=0, step=1, key=f"id_{df_hash}", ) if status: selected_status = st.selectbox( "🗓️ Status / حالة", ["all / الكل", "Done / تم", "Planned / مخطط لها"], key=f"status_{df_hash}" ) if query: # Filtering the dataframe based on the query mask = df.apply(lambda row: row.astype(str).str.contains(query.lower(), case=False).any(), axis=1) display_df = df[mask] else: display_df = df if search_id and id_number: display_df = display_df[display_df["id"] == id_number] display_df = display_df.drop(drop_cols, axis=1) if status: target = "Intervention status" if selected_status == "Done / تم": display_df = display_df[display_df[target] == "Intervention déjà passée / Past intevention"] elif selected_status == "Planned / مخطط لها": display_df = display_df[display_df[target] != "Intervention déjà passée / Past intevention"] st.dataframe(display_df, height=500) # Original link to the Google Sheet if show_link: st.markdown( f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**" ) # if we want to check hidden contact information if for_help_requests: st.markdown( "We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at nt3awnoumorocco@gmail.com", ) st.markdown( """
nt3awnoumorocco@gmail.com نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
""", unsafe_allow_html=True, )