NTAMBARA Etienne commited on
Commit
348c3ba
·
1 Parent(s): ce19f9a

Changes Made Keys p3

Browse files
Files changed (2) hide show
  1. app.py +20 -23
  2. app1.py +0 -85
app.py CHANGED
@@ -7,7 +7,6 @@ import pickle
7
  import firebase_admin
8
  from firebase_admin import credentials
9
  from firebase_admin import db
10
- from datetime import datetime
11
  from firebase_admin import storage
12
 
13
  # Initialize Firebase
@@ -32,53 +31,51 @@ def recognize_face(input_image):
32
  # Convert PIL Image to numpy array
33
  img = np.array(input_image)
34
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
35
-
36
  # Detect faces and encode
37
  face_locations = face_recognition.face_locations(img)
38
  face_encodings = face_recognition.face_encodings(img, face_locations)
39
-
40
  # Initialize the database reference
41
  ref = db.reference('Students')
42
- recognized_faces_info = []
43
-
44
- for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
 
45
  matches = face_recognition.compare_faces(encodeListKnown, face_encoding)
46
  name = "Unknown"
 
47
 
48
  face_distances = face_recognition.face_distance(encodeListKnown, face_encoding)
49
  best_match_index = np.argmin(face_distances)
50
  if matches[best_match_index]:
51
  student_id = studentsIds[best_match_index]
52
- student_ref = ref.child(student_id)
53
- student_info = student_ref.get()
54
 
55
  if student_info:
56
  name = student_info['name']
57
- # Increment total_attendance
58
- student_info['total_attendance'] += 1
59
- # Update last attendance time
60
- student_info['last_attendance_time'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
61
- # Write back to the database
62
- student_ref.update(student_info)
63
- recognized_faces_info.append(student_info)
64
  else:
65
- recognized_faces_info.append({'name': 'Unknown'})
66
 
67
  # Draw rectangles around the faces
68
- cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
69
- cv2.putText(img, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
 
70
 
71
  # Convert back to PIL Image
72
  pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
73
- return pil_img, recognized_faces_info
74
-
 
 
 
 
75
  # Gradio interface
76
  iface = gr.Interface(
77
  fn=recognize_face,
78
- inputs=gr.components.Image(source="webcam", type="pil", tool="editor"),
79
  outputs=[
80
- gr.components.Image(type="pil"),
81
- gr.components.JSON(label="Student Information")
82
  ],
83
  title="Real-time Face Recognition Attendance System",
84
  description="Activate your webcam and take a photo to check attendance."
 
7
  import firebase_admin
8
  from firebase_admin import credentials
9
  from firebase_admin import db
 
10
  from firebase_admin import storage
11
 
12
  # Initialize Firebase
 
31
  # Convert PIL Image to numpy array
32
  img = np.array(input_image)
33
  img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
 
34
  # Detect faces and encode
35
  face_locations = face_recognition.face_locations(img)
36
  face_encodings = face_recognition.face_encodings(img, face_locations)
 
37
  # Initialize the database reference
38
  ref = db.reference('Students')
39
+
40
+ # Recognize faces and fetch data from the database
41
+ results = []
42
+ for face_encoding in face_encodings:
43
  matches = face_recognition.compare_faces(encodeListKnown, face_encoding)
44
  name = "Unknown"
45
+ student_info = {}
46
 
47
  face_distances = face_recognition.face_distance(encodeListKnown, face_encoding)
48
  best_match_index = np.argmin(face_distances)
49
  if matches[best_match_index]:
50
  student_id = studentsIds[best_match_index]
51
+ student_info = ref.child(student_id).get()
 
52
 
53
  if student_info:
54
  name = student_info['name']
55
+ results.append(student_info)
 
 
 
 
 
 
56
  else:
57
+ results.append({'name': 'Unknown'})
58
 
59
  # Draw rectangles around the faces
60
+ for (top, right, bottom, left), name in zip(face_locations, [student_info.get('name', 'Unknown') for student_info in results]):
61
+ cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
62
+ cv2.putText(img, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
63
 
64
  # Convert back to PIL Image
65
  pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
66
+ return pil_img, results
67
+ # Define a function to handle webcam images
68
+ def process_webcam_image(image):
69
+ # Convert the base64 image to a format that can be processed
70
+ # Process the image through the face recognition function
71
+ return recognize_face(image)
72
  # Gradio interface
73
  iface = gr.Interface(
74
  fn=recognize_face,
75
+ inputs=gr.Image(tool="editor", source="webcam"),
76
  outputs=[
77
+ gr.Image(),
78
+ gr.JSON(label="Student Information")
79
  ],
80
  title="Real-time Face Recognition Attendance System",
81
  description="Activate your webcam and take a photo to check attendance."
app1.py DELETED
@@ -1,85 +0,0 @@
1
- import gradio as gr
2
- import face_recognition
3
- import cv2
4
- import numpy as np
5
- from PIL import Image
6
- import pickle
7
- import firebase_admin
8
- from firebase_admin import credentials
9
- from firebase_admin import db
10
- from firebase_admin import storage
11
-
12
- # Initialize Firebase
13
- cred = credentials.Certificate("serviceAccountKey.json") # Update with your credentials path
14
- firebase_app = firebase_admin.initialize_app(cred, {
15
- 'databaseURL': 'https://faceantendancerealtime-default-rtdb.firebaseio.com/',
16
- 'storageBucket': 'faceantendancerealtime.appspot.com'
17
- })
18
- bucket = storage.bucket()
19
-
20
- # Function to download face encodings from Firebase Storage
21
- def download_encodings():
22
- blob = bucket.blob('EncodeFile.p')
23
- blob.download_to_filename('EncodeFile.p')
24
- with open('EncodeFile.p', 'rb') as file:
25
- return pickle.load(file)
26
-
27
- encodeListKnownWithIds = download_encodings()
28
- encodeListKnown, studentsIds = encodeListKnownWithIds
29
-
30
- def recognize_face(input_image):
31
- # Convert PIL Image to numpy array
32
- img = np.array(input_image)
33
- img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
34
- # Detect faces and encode
35
- face_locations = face_recognition.face_locations(img)
36
- face_encodings = face_recognition.face_encodings(img, face_locations)
37
- # Initialize the database reference
38
- ref = db.reference('Students')
39
-
40
- # Recognize faces and fetch data from the database
41
- results = []
42
- for face_encoding in face_encodings:
43
- matches = face_recognition.compare_faces(encodeListKnown, face_encoding)
44
- name = "Unknown"
45
- student_info = {}
46
-
47
- face_distances = face_recognition.face_distance(encodeListKnown, face_encoding)
48
- best_match_index = np.argmin(face_distances)
49
- if matches[best_match_index]:
50
- student_id = studentsIds[best_match_index]
51
- student_info = ref.child(student_id).get()
52
-
53
- if student_info:
54
- name = student_info['name']
55
- results.append(student_info)
56
- else:
57
- results.append({'name': 'Unknown'})
58
-
59
- # Draw rectangles around the faces
60
- for (top, right, bottom, left), name in zip(face_locations, [student_info.get('name', 'Unknown') for student_info in results]):
61
- cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
62
- cv2.putText(img, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
63
-
64
- # Convert back to PIL Image
65
- pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
66
- return pil_img, results
67
- # Define a function to handle webcam images
68
- def process_webcam_image(image):
69
- # Convert the base64 image to a format that can be processed
70
- # Process the image through the face recognition function
71
- return recognize_face(image)
72
- # Gradio interface
73
- iface = gr.Interface(
74
- fn=recognize_face,
75
- inputs=gr.Image(tool="editor", source="webcam"),
76
- outputs=[
77
- gr.Image(),
78
- gr.JSON(label="Student Information")
79
- ],
80
- title="Real-time Face Recognition Attendance System",
81
- description="Activate your webcam and take a photo to check attendance."
82
- )
83
-
84
- if __name__ == "__main__":
85
- iface.launch()