Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the saved Random Forest model
|
6 |
+
model = joblib.load('random_forest_model.pkl')
|
7 |
+
|
8 |
+
# Define the feature names (as per your dataset)
|
9 |
+
feature_names = [
|
10 |
+
'Marital status', 'Application mode', 'Application order', 'Course',
|
11 |
+
'Daytime/evening attendance', 'Previous qualification', 'Nacionality',
|
12 |
+
"Mother's qualification", "Mother's occupation", 'Displaced',
|
13 |
+
'Educational special needs', 'Debtor', 'Tuition fees up to date',
|
14 |
+
'Gender', 'Scholarship holder', 'Curricular units 1st sem (credited)',
|
15 |
+
'Curricular units 1st sem (without evaluations)', 'Unemployment rate',
|
16 |
+
'Inflation rate', 'GDP'
|
17 |
+
]
|
18 |
+
|
19 |
+
# Define the prediction function
|
20 |
+
def predict(
|
21 |
+
marital_status, application_mode, application_order, course,
|
22 |
+
attendance, previous_qualification, nationality,
|
23 |
+
mother_qualification, mother_occupation, displaced,
|
24 |
+
special_needs, debtor, tuition_fees,
|
25 |
+
gender, scholarship_holder, curricular_units_credited,
|
26 |
+
curricular_units_without_evaluations, unemployment_rate,
|
27 |
+
inflation_rate, gdp
|
28 |
+
):
|
29 |
+
# Create a numpy array from the input features
|
30 |
+
input_data = np.array([
|
31 |
+
marital_status, application_mode, application_order, course,
|
32 |
+
attendance, previous_qualification, nationality,
|
33 |
+
mother_qualification, mother_occupation, displaced,
|
34 |
+
special_needs, debtor, tuition_fees,
|
35 |
+
gender, scholarship_holder, curricular_units_credited,
|
36 |
+
curricular_units_without_evaluations, unemployment_rate,
|
37 |
+
inflation_rate, gdp
|
38 |
+
]).reshape(1, -1)
|
39 |
+
|
40 |
+
# Make a prediction
|
41 |
+
prediction = model.predict(input_data)[0]
|
42 |
+
|
43 |
+
# Map the prediction to the corresponding label
|
44 |
+
if prediction == 0:
|
45 |
+
return "Dropout"
|
46 |
+
elif prediction == 1:
|
47 |
+
return "Graduate"
|
48 |
+
elif prediction == 2:
|
49 |
+
return "Enrolled"
|
50 |
+
else:
|
51 |
+
return "Unknown"
|
52 |
+
|
53 |
+
# Create a Gradio interface
|
54 |
+
inputs = [
|
55 |
+
gr.inputs.Number(label="Marital status"),
|
56 |
+
gr.inputs.Number(label="Application mode"),
|
57 |
+
gr.inputs.Number(label="Application order"),
|
58 |
+
gr.inputs.Number(label="Course"),
|
59 |
+
gr.inputs.Number(label="Daytime/evening attendance"),
|
60 |
+
gr.inputs.Number(label="Previous qualification"),
|
61 |
+
gr.inputs.Number(label="Nacionality"),
|
62 |
+
gr.inputs.Number(label="Mother's qualification"),
|
63 |
+
gr.inputs.Number(label="Mother's occupation"),
|
64 |
+
gr.inputs.Number(label="Displaced"),
|
65 |
+
gr.inputs.Number(label="Educational special needs"),
|
66 |
+
gr.inputs.Number(label="Debtor"),
|
67 |
+
gr.inputs.Number(label="Tuition fees up to date"),
|
68 |
+
gr.inputs.Number(label="Gender"),
|
69 |
+
gr.inputs.Number(label="Scholarship holder"),
|
70 |
+
gr.inputs.Number(label="Curricular units 1st sem (credited)"),
|
71 |
+
gr.inputs.Number(label="Curricular units 1st sem (without evaluations)"),
|
72 |
+
gr.inputs.Number(label="Unemployment rate"),
|
73 |
+
gr.inputs.Number(label="Inflation rate"),
|
74 |
+
gr.inputs.Number(label="GDP"),
|
75 |
+
]
|
76 |
+
|
77 |
+
outputs = gr.outputs.Textbox(label="Prediction")
|
78 |
+
|
79 |
+
# Launch the Gradio app
|
80 |
+
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="Student Dropout Prediction").launch()
|