Spaces:
Running
Running
import streamlit as st | |
st.set_page_config(layout="wide") | |
import pandas as pd | |
import numpy as np | |
from zipfile import ZipFile | |
import plotly.express as px | |
import plotly.graph_objs as go | |
LLR_FILE='ALL_hum_isoforms_ESM1b_LLR.zip' | |
df=pd.read_csv('isoform_list.csv',index_col=0) | |
uids=list(df.index.values) | |
clinvar = pd.read_csv('clinvar.csv.gz') | |
def load_LLR(uniprot_id): | |
'''Loads the LLRs for a given uniprot id. Returns a 20xL dataframe | |
rows are indexed by AA change, | |
(AAorder=['K','R','H','E','D','N','Q','T','S','C','G','A','V','L','I','M','P','Y','F','W']) | |
columns indexed by WT_AA+position e.g, "G 12" | |
Usage example: load_LLR('P01116') or load_LLR('P01116-2')''' | |
with ZipFile(LLR_FILE) as myzip: | |
data = myzip.open(myzip.namelist()[0]+uniprot_id+'_LLR.csv') | |
return pd.read_csv(data,index_col=0) | |
def plot_interactive(uniprot_id, show_clinvar=False): | |
primaryLLR = load_LLR(uniprot_id) | |
template='plotly_white' | |
fig = px.imshow(primaryLLR.values, x=primaryLLR.columns, y=primaryLLR.index, color_continuous_scale='Viridis_r',zmax=0,zmin=-20, | |
labels=dict(y="Amino acid change", x="Protein sequence", color="LLR"), | |
template=template, | |
title=selection) | |
fig.update_xaxes(tickangle=-90,range=[0,99],rangeslider=dict(visible=True),dtick=1) | |
fig.update_yaxes(dtick=1) | |
fig.update_layout({ | |
'plot_bgcolor': 'rgba(0, 0, 0, 0)', | |
'paper_bgcolor': 'rgba(0, 0, 0, 0)', | |
},font={'family':'Arial','size':11}, | |
hoverlabel=dict(font=dict(family='Arial', size=14))) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"<b>%{x} %{y}</b>"+ | |
" (%{z:.2f})", | |
])+'<extra></extra>' | |
) | |
if show_clinvar: | |
iso_clinvar = clinvar[clinvar.LLR_file_id == uniprot_id] | |
iso_clinvar = iso_clinvar[iso_clinvar.ClinicalSignificance.isin(['Benign','Pathogenic'])] | |
b_mut=set(iso_clinvar[iso_clinvar.ClinicalSignificance=='Benign'].variant.values) | |
p_mut=set(iso_clinvar[iso_clinvar.ClinicalSignificance=='Pathogenic'].variant.values) | |
hwt_x=[] | |
hwt_y=[] | |
cust=[] | |
phwt_x=[] | |
phwt_y=[] | |
pcust=[] | |
for i in primaryLLR.columns: | |
for j in list(primaryLLR.index): | |
mut = i[0]+i[2:]+j | |
if mut in b_mut: | |
hwt_x+=[i] | |
hwt_y+=[j] | |
cust+=[primaryLLR.loc[j,i]] | |
elif mut in p_mut: | |
phwt_x+=[i] | |
phwt_y+=[j] | |
pcust+=[primaryLLR.loc[j,i]] | |
fig.add_trace(go.Scatter( | |
x=phwt_x, | |
y=phwt_y, | |
customdata=pcust, | |
mode='markers', | |
marker=dict(size=8), | |
showlegend=False, | |
hovertemplate="<br>".join([ | |
"<b>%{x} %{y}</b>"+ | |
" (%{customdata:.2f})", | |
])+'<extra></extra>') | |
) | |
fig.add_trace(go.Scatter( | |
x=hwt_x, | |
y=hwt_y, | |
customdata=cust, | |
mode='markers', | |
showlegend=False, | |
marker=dict(size=8), | |
hovertemplate="<br>".join([ | |
"<b>%{x} %{y}</b>"+ | |
" (%{customdata:.2f})", | |
])+'<extra></extra>') | |
) | |
return fig | |
selection = st.selectbox("uniprot_id:", df) | |
uid=df[df.txt==selection].index.values[0] | |
show_clinvar = st.checkbox('show ClinVar annotations (red: pathogenic, green: benign)') | |
fig = plot_interactive(uid,show_clinvar=show_clinvar) | |
fig.update_layout(width = 800, height = 600, autosize = False) | |
st.plotly_chart(fig, use_container_width=True) |