Spaces:
Runtime error
Runtime error
File size: 16,653 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_AVX_FIXED_H_
#define LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_AVX_FIXED_H_
#include <cstdint>
#if defined __AVX2__
#include <immintrin.h>
#endif
#include <vector>
#include "sparse_matmul/compute/ar_inputs.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"
namespace csrblocksparse {
#if defined __AVX2__
constexpr int kAVX2SIMDWidth = 8;
// Loads 8x fixed32 from |ptr0| and adds to |input|.
// If |kTwoInputs|, also loads from |ptr1| and adds that as well.
// Returns the 2 or 3-way sum.
template <bool kTwoInputs>
inline __m256i LoadAndAddFixed32(const int32_t* ptr0, const int32_t* ptr1,
const __m256i& input) {
__m256i data0 = _mm256_load_si256(reinterpret_cast<const __m256i*>(ptr0));
if (kTwoInputs) {
__m256i data1 = _mm256_load_si256(reinterpret_cast<const __m256i*>(ptr1));
data0 = _mm256_add_epi32(data0, data1);
}
return _mm256_add_epi32(data0, input);
}
// Loads 8x fixed32 from ptr0.
// If |kTwoInputs|, also loads from |ptr1| and adds.
// Multiplies the loaded values by the factor and adds to |input|, which also
// is converted to float.
// Returns the sum.
template <bool kTwoInputs>
inline __m256 LoadMultiplyAddToFloat(const int32_t* ptr0, const int32_t* ptr1,
const __m256& float_factor,
const __m256& input) {
__m256i data0 = _mm256_load_si256(reinterpret_cast<const __m256i*>(ptr0));
if (kTwoInputs) {
__m256i data1 = _mm256_load_si256(reinterpret_cast<const __m256i*>(ptr1));
data0 = _mm256_add_epi32(data0, data1);
}
__m256 float_result = _mm256_cvtepi32_ps(data0);
float_result = _mm256_mul_ps(float_result, float_factor);
return _mm256_add_ps(float_result, input);
}
// Loads 16x float in 2x 8x registers from |ptr0_1| and multiplies by
// |input_pairs|, likewise formatted as 8x floats, alternating between the two
// AR inputs and sums each pair of results, making 8x float results.
// If |kThreeInputs|, also loads 8x float from |ptr2| and multiplies by
// |third_input|, which must be formatted as 8x float. The second product is
// added to the previous result.
// Returns the sum added to |accumulator|.
template <bool kThreeInputs>
inline __m256 MultiplyAddFloat(const __m256& input_pairs,
const __m256& third_input, const float* ptr0_1,
const float* ptr2, const __m256& accumulator) {
__m256 data_pair0 = _mm256_load_ps(ptr0_1);
__m256 data_pair1 = _mm256_load_ps(ptr0_1 + 8);
data_pair0 = _mm256_mul_ps(data_pair0, input_pairs);
data_pair1 = _mm256_mul_ps(data_pair1, input_pairs);
data_pair0 = _mm256_hadd_ps(data_pair0, data_pair1);
// Swap the middle 2 64 bit pairs to correct the hadd result.
data_pair0 = _mm256_permute4x64_pd((__m256d)data_pair0, 0xd8);
if (kThreeInputs) {
// Load 256 bits (8 x float) of data, then multiply-accumulate.
data_pair1 = _mm256_load_ps(ptr2);
data_pair1 = _mm256_mul_ps(data_pair1, third_input);
data_pair0 = _mm256_add_ps(data_pair0, data_pair1);
}
// Add conditioning.
return _mm256_add_ps(data_pair0, accumulator);
}
// Processes the tanh and the final combination, returns the new GRU state.
template <int kInputMantissaBits, int kStateMantissaBits, bool kSplitGates>
inline __m256i GRUComputeState(const __m256& cell0, const __m256& cell1,
const __m256& reset0, const __m256& reset1,
const __m256& update0, const __m256& update1,
const int32_t* gate_ptr,
const int32_t* gate_other_ptr,
const void* gru_h_ptr) {
// Multiply the cell gru output and the reset.
__m256 float_gru0 = LoadMultiplyAddToFloat<kSplitGates>(
gate_ptr, gate_other_ptr, reset0, cell0);
__m256 float_gru1 = LoadMultiplyAddToFloat<kSplitGates>(
gate_ptr + kAVX2SIMDWidth, gate_other_ptr + kAVX2SIMDWidth, reset1,
cell1);
// Compute tanh on the result.
__m256 hbar0, hbar1;
float_tanh_float<kInputMantissaBits, TM_ORDER4_FLOAT>(float_gru0, float_gru1,
hbar0, hbar1);
// Load the 16-bit previous gru state and update.
__m256i gru = _mm256_load_si256(reinterpret_cast<__m256i const*>(gru_h_ptr));
__m256 state_factor =
_mm256_set1_ps(1.0f / (static_cast<float>(1 << kStateMantissaBits)));
float_gru0 =
_mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_castsi256_si128(gru)));
float_gru1 = _mm256_cvtepi32_ps(
_mm256_cvtepi16_epi32(_mm256_extractf128_si256(gru, 1)));
float_gru0 = _mm256_mul_ps(float_gru0, state_factor);
float_gru1 = _mm256_mul_ps(float_gru1, state_factor);
float_gru0 = _mm256_sub_ps(float_gru0, hbar0);
float_gru1 = _mm256_sub_ps(float_gru1, hbar1);
float_gru0 = _mm256_mul_ps(float_gru0, update0);
float_gru1 = _mm256_mul_ps(float_gru1, update1);
state_factor = _mm256_set1_ps(static_cast<float>(1 << kStateMantissaBits));
float_gru0 = _mm256_add_ps(float_gru0, hbar0);
float_gru1 = _mm256_add_ps(float_gru1, hbar1);
float_gru0 = _mm256_mul_ps(float_gru0, state_factor);
float_gru1 = _mm256_mul_ps(float_gru1, state_factor);
return PackFloatsToFixed16(float_gru0, float_gru1);
}
// According to |kInputsMode|, processes 0, 2 or 3 autoregressive inputs and
// combines with |input| and |gates*|.
// With 2 AR inputs, loads 8x pairs of float from |pair_weights| and multiplies
// by |paired_ar|, likewise formatted as 8x float, but scaled such that the
// product with pair_weights is on the same scale as |*input| and |*gates0|,
// and sums each pair result, making 8x float results.
// If 3 AR inputs, also loads 8x float from |third_weights| and multiplies by
// |third_ar|, which must be formatted as 8x scaled floats. The second product
// is added to the previous result.
// Inputs, 8x fixed32 are loaded from |input|, and added to the total.
// Finally 8x fixed32 from |gates0| (and |gates1| if |kTwoGates|) are added as
// well.
// Returns the total sum as a float, but on the scale of |*input|.
template <bool kTwoGates, ARInputsMode kInputsMode>
inline __m256 GruInput32ToFloat(const __m256& paired_ar,
const __m256& third_ar,
const float* pair_weights,
const float* third_weights,
const int32_t* gates0, const int32_t* gates1,
const int32_t* input) {
__m256i data32 = _mm256_load_si256(reinterpret_cast<__m256i const*>(input));
data32 = LoadAndAddFixed32<kTwoGates>(gates0, gates1, data32);
__m256 float_data = _mm256_cvtepi32_ps(data32);
if (kInputsMode != ARInputsMode::k0ARInputs) {
float_data = MultiplyAddFloat<kInputsMode == ARInputsMode::k3ARInputs>(
paired_ar, third_ar, pair_weights, third_weights, float_data);
}
return float_data;
}
// Generic GRU gates function controlled by template parameters thus:
// - |kInputBits|: the mantissa bits in |*input_ptr|, |*gru_recurrent_ptr|.
// - |kStateBits|: the mantissa_bits in |*gru_state_ptr|.
// - |kInputsMode == |k0ARInputs|: There are no autoregressive inputs so
// |ar_sample, |ar_sample1|, |ar_sample2|, |ar_01_weights|, |ar_2_weights| are
// ignored.
// - |kInputsMode| == |k2ARInputs|: |ar_sample0|, |ar_sample1| are multiplied by
// |ar_01_weights| and added to the (conditioning) input.
// - |kInputsMode| == |k3ARInputs|: |ar_sample2| is multiplied by |ar_2_weights|
// and added to the other two AR inputs (and added to the conditioning input).
// - |kReplicas| determines the number of duplicates of the output to be
// written, separated by |replica_stride|. If zero, then the number of
// replicas is variable and taken from the |replicas| argument.
// - If |kSplitGates| is true: The |*gru_recurrent_other_ptr| is secondary
// recurrent input that must be added to |*gru_recurrent_ptr|.
// - |start|, |end| are |rows| in [0, |state_size|] to be processed by this
// thread.
//
// Previous state is read from |*gru_state_ptr| and the new state is written to
// *(|gru_state_ptr| + i * |replica_stride| for i in [0, |kReplicas|]).
template <int kInputBits, int kStateBits,
ARInputsMode kInputsMode = ARInputsMode::k0ARInputs,
int kReplicas = 1, bool kSplitGates = false>
inline void GruGatesTemplate(
int start, int end, int state_size, int replicas, int replica_stride,
const int32_t* gru_recurrent_ptr, const int32_t* input_ptr,
const std::pair<float, float>* ar_sample01, const float* ar_01_weights,
const float* ar_sample2, const float* ar_2_weights,
const int32_t* gru_recurrent_other_ptr, int16_t* gru_state_ptr) {
constexpr int kQRIncrement = kAVX2SIMDWidth;
// Increment all the pointers to save on pointer arithmetic in the loop.
input_ptr += start;
gru_state_ptr += start;
gru_recurrent_ptr += start;
if (kSplitGates) gru_recurrent_other_ptr += start;
__m256 ar_2_inputs, ar_3rd_input;
if (kInputsMode != ARInputsMode::k0ARInputs) {
ar_01_weights += 2 * start;
ar_2_inputs = _mm256_castsi256_ps(
_mm256_set1_epi64x(*reinterpret_cast<const int64_t*>(ar_sample01)));
if (kInputsMode == ARInputsMode::k3ARInputs) {
ar_2_weights += start;
ar_3rd_input = _mm256_set1_ps(*ar_sample2);
} else {
ar_3rd_input = {};
}
} else {
ar_2_inputs = {};
ar_3rd_input = {};
}
// The transcendentals handle 2x registers of data at once, so we have to do
// everything in duplicate.
for (int i = start; i < end; i += kQRIncrement * 2) {
// Load 8 pairs of fixed16s for each of reset, update and cell.
__m256 reset0 = GruInput32ToFloat<kSplitGates, kInputsMode>(
ar_2_inputs, ar_3rd_input, ar_01_weights, ar_2_weights,
gru_recurrent_ptr, gru_recurrent_other_ptr, input_ptr);
__m256 reset1 = GruInput32ToFloat<kSplitGates, kInputsMode>(
ar_2_inputs, ar_3rd_input, ar_01_weights + 2 * kQRIncrement,
ar_2_weights + kQRIncrement, gru_recurrent_ptr + kAVX2SIMDWidth,
gru_recurrent_other_ptr + kAVX2SIMDWidth, input_ptr + kAVX2SIMDWidth);
float_sigmoid_float<kInputBits>(reset0, reset1);
__m256 update0 = GruInput32ToFloat<kSplitGates, kInputsMode>(
ar_2_inputs, ar_3rd_input, ar_01_weights + 2 * state_size,
ar_2_weights + state_size, gru_recurrent_ptr + state_size,
gru_recurrent_other_ptr + state_size, input_ptr + state_size);
__m256 update1 = GruInput32ToFloat<kSplitGates, kInputsMode>(
ar_2_inputs, ar_3rd_input,
ar_01_weights + 2 * state_size + 2 * kQRIncrement,
ar_2_weights + state_size + kQRIncrement,
gru_recurrent_ptr + state_size + kAVX2SIMDWidth,
gru_recurrent_other_ptr + state_size + kAVX2SIMDWidth,
input_ptr + state_size + kAVX2SIMDWidth);
float_sigmoid_float<kInputBits>(update0, update1);
__m256 cell0 = _mm256_cvtepi32_ps(_mm256_load_si256(
reinterpret_cast<__m256i const*>(input_ptr + 2 * state_size)));
__m256 cell1 =
_mm256_cvtepi32_ps(_mm256_load_si256(reinterpret_cast<__m256i const*>(
input_ptr + 2 * state_size + kAVX2SIMDWidth)));
if (kInputsMode != ARInputsMode::k0ARInputs) {
cell0 = MultiplyAddFloat<kInputsMode == ARInputsMode::k3ARInputs>(
ar_2_inputs, ar_3rd_input, ar_01_weights + 4 * state_size,
ar_2_weights + 2 * state_size, cell0);
cell1 = MultiplyAddFloat<kInputsMode == ARInputsMode::k3ARInputs>(
ar_2_inputs, ar_3rd_input,
ar_01_weights + 4 * state_size + 2 * kQRIncrement,
ar_2_weights + 2 * state_size + kQRIncrement, cell1);
}
__m256i gru_state = GRUComputeState<kInputBits, kStateBits, kSplitGates>(
cell0, cell1, reset0, reset1, update0, update1,
gru_recurrent_ptr + 2 * state_size,
gru_recurrent_other_ptr + 2 * state_size, gru_state_ptr);
if (kReplicas > 0) {
// With |kReplicas| a template parameter, the compiler will unroll the
// loop.
for (int j = 0; j < kReplicas; ++j) {
_mm256_store_si256(
reinterpret_cast<__m256i*>(gru_state_ptr + j * replica_stride),
gru_state);
}
} else {
// This loop will not unroll as replicas is variable.
for (int j = 0; j < replicas; ++j) {
_mm256_store_si256(
reinterpret_cast<__m256i*>(gru_state_ptr + j * replica_stride),
gru_state);
}
}
// Increment all the pointers.
input_ptr += 2 * kAVX2SIMDWidth;
gru_state_ptr += 2 * kAVX2SIMDWidth;
gru_recurrent_ptr += 2 * kAVX2SIMDWidth;
if (kSplitGates) gru_recurrent_other_ptr += 2 * kAVX2SIMDWidth;
if (kInputsMode != ARInputsMode::k0ARInputs) {
ar_01_weights += 4 * kQRIncrement;
if (kInputsMode == ARInputsMode::k3ARInputs)
ar_2_weights += 2 * kQRIncrement;
}
}
}
// Dispatches calls to the GruGatesTemplate function above converting the
// replicas variable argument to a template parameter to allow the compiler to
// unroll the write loop.
// |ar_sample01| packs sample 0 and 1 into a pair because the QR weights are
// formatted with the weights interleaved for sample 0 and 1. The two samples
// represent coarse and fine for WaveRNN.
template <int kInputBits, int kStateBits,
ARInputsMode kInputsMode = ARInputsMode::k2ARInputs,
bool kSplitGates = false>
inline void GruGatesAVXFixed(
int start, int end, int state_size, const int32_t* gru_recurrent_ptr,
const int32_t* input_ptr, const std::pair<float, float>* ar_sample01,
const float* ar_01_weights, int num_replicas, int replica_stride,
const float* ar_sample2, const float* ar_2_weights,
const int32_t* gru_recurrent_other_ptr, int16_t* gru_state_ptr) {
// Convert the number of replicas from a variable to a template parameter
// with a switch. This enables the compiler to unroll the loop for
// the write, making it faster for common numbers of threads.
switch (num_replicas) {
case 1:
GruGatesTemplate<kInputBits, kStateBits, kInputsMode, /*kReplicas=*/1,
kSplitGates>(
start, end, state_size, num_replicas, replica_stride,
gru_recurrent_ptr, input_ptr, ar_sample01, ar_01_weights, ar_sample2,
ar_2_weights, gru_recurrent_other_ptr, gru_state_ptr);
break;
case 2:
GruGatesTemplate<kInputBits, kStateBits, kInputsMode, /*kReplicas=*/2,
kSplitGates>(
start, end, state_size, num_replicas, replica_stride,
gru_recurrent_ptr, input_ptr, ar_sample01, ar_01_weights, ar_sample2,
ar_2_weights, gru_recurrent_other_ptr, gru_state_ptr);
break;
case 4:
GruGatesTemplate<kInputBits, kStateBits, kInputsMode, /*kReplicas=*/4,
kSplitGates>(
start, end, state_size, num_replicas, replica_stride,
gru_recurrent_ptr, input_ptr, ar_sample01, ar_01_weights, ar_sample2,
ar_2_weights, gru_recurrent_other_ptr, gru_state_ptr);
break;
case 6:
GruGatesTemplate<kInputBits, kStateBits, kInputsMode, /*kReplicas=*/6,
kSplitGates>(
start, end, state_size, num_replicas, replica_stride,
gru_recurrent_ptr, input_ptr, ar_sample01, ar_01_weights, ar_sample2,
ar_2_weights, gru_recurrent_other_ptr, gru_state_ptr);
break;
default:
// Zero |kReplicas| tells the function to use the |num_replicas| variable.
GruGatesTemplate<kInputBits, kStateBits, kInputsMode, /*kReplicas=*/0,
kSplitGates>(
start, end, state_size, num_replicas, replica_stride,
gru_recurrent_ptr, input_ptr, ar_sample01, ar_01_weights, ar_sample2,
ar_2_weights, gru_recurrent_other_ptr, gru_state_ptr);
}
}
#endif // __AVX2__
} // namespace csrblocksparse
#endif // LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_AVX_FIXED_H_
|