Spaces:
Runtime error
Runtime error
File size: 35,003 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_LAYERS_CSR_BLOCKSPARSE_MATRIX_H_
#define LYRA_CODEC_SPARSE_MATMUL_LAYERS_CSR_BLOCKSPARSE_MATRIX_H_
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <memory>
#include <tuple>
#include <vector>
#include "glog/logging.h"
// IWYU pragma: begin_exports
#include "sparse_matmul/compute/kernels_generic.h"
#include "sparse_matmul/compute/matmul.h"
#include "sparse_matmul/compute/thread_bounds.h"
#include "sparse_matmul/layers/masked_sparse_matrix.h"
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/float16_types.h"
#include "sparse_matmul/os/coop_threads.h"
#include "sparse_matmul/vector/cache_aligned_vector.h"
// IWYU pragma: end_exports
#include "absl/memory/memory.h"
namespace csrblocksparse {
// CsrBlockSparseMatrix stores a modified block compressed sparse row
// representation of a sparse matrix. The ordering of the weights is modified
// in the 16x1 and 1x1 cases so that a certain number (4 and 8 respectively)
// of columns of weights are stored contiguously before moving on to the next
// row. The 4x4 case stores each block contiguously.
//
// Currently it is constructed from a MaskedSparseMatrix which usees a dense
// binary mask representation. The construction generates the compressed
// representation. Further iterations will support a direct serialization
// of the compressed representation.
//
// MaskedSparseMatrix masked_matrix(rows, cols, existing_mask, existing_values)
// CsrBlockSparseMatrix matrix(masked_matrix)
//
// matrix.SpMV_bias(rhs, bias, &out);
//
// This class is thread compatible.
template <typename WeightType, typename RhsType, typename DeltaType = int16_t>
class CsrBlockSparseMatrix {
public:
CsrBlockSparseMatrix() {}
// Reference used to indicate that this is an input and not an output.
CsrBlockSparseMatrix(const uint8_t* const& buffer, const std::size_t& len) {
ReadFromFlatBuffer(buffer, len);
ComputeRHSIndices();
}
template <typename InputType>
CsrBlockSparseMatrix(const MaskedSparseMatrix<InputType>& masked_matrix) {
sparsity_ = masked_matrix.sparsity();
rows_ = masked_matrix.rows();
cols_ = masked_matrix.cols();
DetermineBlockSize(masked_matrix);
if (block_width_ == 1 && block_height_ == 1)
col_multiple_ = 8;
else
col_multiple_ = 1;
std::vector<InputType> weights(masked_matrix.values().begin(),
masked_matrix.values().end());
reduced_rows_ = (rows_ + block_height_ - 1) / block_height_;
rows_ = reduced_rows_ * block_height_;
reduced_cols_ = cols_ / block_width_;
// Calculate the reduced CSR representation of the matrix.
std::vector<int> reduced_mask(reduced_rows_ * reduced_cols_);
std::vector<int> row_offsets = {0};
int nnz = 0;
const auto& mask = masked_matrix.mask();
for (int r = 0; r < reduced_rows_; ++r) {
for (int c = 0; c < reduced_cols_; ++c) {
int mask_val = mask[r * block_height_ * cols_ + c * block_width_];
reduced_mask[r * reduced_cols_ + c] = mask_val;
nnz += mask_val;
}
row_offsets.push_back(nnz);
}
// Make sure the reduced representation has the correct number of columns.
MakeColumnsMultiple(row_offsets, &reduced_mask, &weights);
std::vector<int> col_indices;
std::vector<WeightType> weights_csr;
std::vector<int> nnz_per_row;
MaskAndWeightsToCsr(reduced_mask, weights, &nnz_per_row, &col_indices,
&weights_csr);
// Generate column deltas from |col_indices|.
std::vector<DeltaType> col_deltas;
for (int i = 0; i < col_indices.size(); ++i) {
// |col_indices| are used to index the RHS vector which is always float.
int64_t diff = sizeof(RhsType);
if (i == 0)
diff *= block_width_ * (col_indices[i]);
else
diff *= block_width_ * (col_indices[i] - col_indices[i - 1]);
CHECK(diff < std::numeric_limits<DeltaType>::max())
<< "delta between column indices in bytes " << diff
<< " exceeded the maximum size of the DeltaType "
<< std::numeric_limits<DeltaType>::max();
col_deltas.push_back(static_cast<DeltaType>(diff));
}
// Because of pre-fetching we need some extra values at the end.
col_deltas.insert(col_deltas.end(), std::max(2, col_multiple_ + 1), 0);
nnz_per_row.insert(nnz_per_row.end(), 2, nnz_per_row.back());
weights_ = CacheAlignedVector<WeightType>(weights_csr);
col_deltas_ = CacheAlignedVector<DeltaType>(col_deltas);
nnz_per_row_ = CacheAlignedVector<int>(nnz_per_row);
ComputeRHSIndices();
num_threads_ = 0;
PrepareForThreads(1);
}
// Constructor makes a matrix from the given weights, deltas and nnz, taking
// the other parameters from |src_matrix|. |cols| is the number of raw columns
// (NOT blocks) of the new matrix.
CsrBlockSparseMatrix(
const CsrBlockSparseMatrix<WeightType, RhsType, DeltaType>& src_matrix,
const std::vector<WeightType>& new_weights,
const std::vector<DeltaType>& new_deltas, const std::vector<int>& new_nnz,
int cols) {
num_threads_ = 0;
col_multiple_ = src_matrix.col_multiple_;
block_width_ = src_matrix.block_width_;
block_height_ = src_matrix.block_height_;
reduced_rows_ = new_nnz.size();
rows_ = reduced_rows_ * block_height_;
cols_ = cols;
reduced_cols_ = cols_ / block_width_;
weights_ = CacheAlignedVector<WeightType>(new_weights);
col_deltas_ = CacheAlignedVector<DeltaType>(new_deltas);
nnz_per_row_ = CacheAlignedVector<int>(new_nnz);
sparsity_ = 1.0f - static_cast<float>(new_weights.size()) / (rows_ * cols_);
ComputeRHSIndices();
name_ = src_matrix.name_;
PrepareForThreads(1);
}
// Factory method takes a column slice out of *this and returns a sparse
// matrix that takes as inputs [|start_col|, |end_col|) of *this, and
// returns the same number of outputs, but only a partial result.
// If |keep_rhs_size|, then the new matrix takes the same rhs as the current
// matrix, but uses a subset of it, instead of expecting just the reduced rhs.
// If |start_col| > |end_col|, then we slice out the complement of the defined
// interval, ie [0, |end_col|) + [|start_col|, current end).
// NOTE That |start_col| and |end_col| are in raw column coordinates, NOT
// block units.
CsrBlockSparseMatrix SplitByColumn(int start_col, int end_col,
bool keep_rhs_size = false) const {
int weight_index = 0;
int delta_index = 0;
std::vector<DeltaType> new_deltas;
std::vector<WeightType> new_weights;
std::vector<int> new_nnz(reduced_rows_);
int col = 0;
int prev_col = keep_rhs_size ? 0 : start_col;
for (int r = 0; r < reduced_rows_; ++r) {
int reduced_col_count = nnz_per_row_[r];
for (int c = 0; c < reduced_col_count; ++c, ++delta_index) {
col += col_deltas_[delta_index] / sizeof(RhsType);
if ((start_col < end_col && start_col <= col && col < end_col) ||
(start_col > end_col && (col < end_col || col >= start_col))) {
++new_nnz[r];
new_deltas.push_back((col - prev_col) * sizeof(RhsType));
prev_col = col;
for (int i = 0; i < block_width_ * block_height_;
++i, ++weight_index) {
new_weights.push_back(weights_[weight_index]);
}
} else {
weight_index += block_width_ * block_height_;
}
}
}
int new_cols = keep_rhs_size ? cols_ : end_col - start_col;
return CsrBlockSparseMatrix(*this, new_weights, new_deltas, new_nnz,
new_cols);
}
// Factory method takes a row slice out of *this and returns a sparse
// matrix that takes the sampe inputs as *this, and returns the outputs for
// the range [|start_row|, |end_row|).
// NOTE That |start_row| and |end_row| are in raw column coordinates, NOT
// block units.
CsrBlockSparseMatrix SplitByRow(int start_row, int end_row) const {
int start_reduced = start_row / block_height_;
int end_reduced = end_row / block_height_;
std::vector<int> new_nnz(nnz_per_row_.data() + start_reduced,
nnz_per_row_.data() + end_reduced);
int weight_start = 0;
for (int r = 0; r < start_reduced; ++r) {
weight_start += nnz_per_row_[r];
}
int weight_end = weight_start;
for (int r = start_reduced; r < end_reduced; ++r) {
weight_end += nnz_per_row_[r];
}
int delta_start = 0;
for (int i = 0; i < weight_start; ++i) {
delta_start += col_deltas_[i];
}
std::vector<DeltaType> new_deltas(col_deltas_.data() + weight_start,
col_deltas_.data() + weight_end);
new_deltas[0] += delta_start;
int block_size = block_height_ * block_width_;
std::vector<WeightType> new_weights(
weights_.data() + weight_start * block_size,
weights_.data() + weight_end * block_size);
return CsrBlockSparseMatrix(*this, new_weights, new_deltas, new_nnz, cols_);
}
// Combines adjacent row blocks, doubling the block height.
// This necessarily involves adding zero weights where the blocks don't align
// across adjacent pairs of rows, so use with caution, as the resulting matrix
// is most likely to run slower if very sparse to begin with.
// In the few cases where the blocks do mostly align, the resulting matmul
// could be much faster, as the number of reads of the rhs will be halved.
void DoubleBlockHeight() {
int new_rows = reduced_rows_ / 2;
std::vector<int> new_nnz(new_rows);
std::vector<DeltaType> new_rhs_indices;
std::vector<WeightType> new_weights;
int rhs_index1 = 0;
int rhs_index2 = 0;
int block_size = block_height_ * block_width_;
for (int r = 0; r < new_rows; ++r) {
int start_nnz = new_rhs_indices.size();
rhs_index2 += nnz_per_row_[r * 2];
int end1 = rhs_index1 + nnz_per_row_[r * 2];
int end2 = rhs_index2 + nnz_per_row_[r * 2 + 1];
// Run over a pair of rows with 2 iterators, combining blocks as we go, or
// padding with zeros where the block positions don't match.
while (rhs_index1 < end1 || rhs_index2 < end2) {
int col1 = rhs_index1 < end1 ? rhs_indices_[rhs_index1] : reduced_cols_;
int col2 = rhs_index2 < end2 ? rhs_indices_[rhs_index2] : reduced_cols_;
if (col1 < col2) {
// Need zero weights for row2 to pad out weights block.
new_rhs_indices.push_back(col1);
new_weights.insert(new_weights.end(),
weights_.data() + rhs_index1 * block_size,
weights_.data() + (rhs_index1 + 1) * block_size);
new_weights.insert(new_weights.end(), block_size,
static_cast<WeightType>(0.0f));
++rhs_index1;
} else if (col1 > col2) {
// Need zero weights for row1 to pad out weights block.
new_rhs_indices.push_back(col2);
new_weights.insert(new_weights.end(), block_size,
static_cast<WeightType>(0.0f));
new_weights.insert(new_weights.end(),
weights_.data() + rhs_index2 * block_size,
weights_.data() + (rhs_index2 + 1) * block_size);
++rhs_index2;
} else {
// Combine weights for both row1 and row2.
new_rhs_indices.push_back(col1);
new_weights.insert(new_weights.end(),
weights_.data() + rhs_index1 * block_size,
weights_.data() + (rhs_index1 + 1) * block_size);
new_weights.insert(new_weights.end(),
weights_.data() + rhs_index2 * block_size,
weights_.data() + (rhs_index2 + 1) * block_size);
++rhs_index1;
++rhs_index2;
}
}
rhs_index1 = rhs_index2;
new_nnz[r] = new_rhs_indices.size() - start_nnz;
}
block_height_ *= 2;
reduced_rows_ /= 2;
weights_ = CacheAlignedVector<WeightType>(new_weights);
rhs_indices_ = CacheAlignedVector<DeltaType>(new_rhs_indices);
nnz_per_row_ = CacheAlignedVector<int>(new_nnz);
sparsity_ = 1.0f - static_cast<float>(new_weights.size()) / (rows_ * cols_);
ComputeColDeltas();
if (num_threads_ > 0) {
int num_threads = num_threads_;
num_threads_ = 0;
PrepareForThreads(num_threads);
}
}
// Allocates memory and fills buffer.
// Caller is responsible for the memory de-allocation.
// TODO(b/189958858): Both Read and Write need to eventually handle the
// different possible HalfType and DeltaType values, but punting for now as
// there is only one supported combination.
std::size_t WriteToFlatBuffer(std::string* csr_flatbuffer) {
std::size_t bytes = 0;
bytes += FixedParameterSize();
bytes += weights_.size() * sizeof(WeightType);
bytes += col_deltas_.size() * sizeof(DeltaType);
bytes += nnz_per_row_.size() * sizeof(int);
uint8_t* bytes_ptr_ptr =
reinterpret_cast<uint8_t*>(CHECK_NOTNULL(malloc(bytes)));
int* int_bytes_ptr = reinterpret_cast<int*>(bytes_ptr_ptr);
*int_bytes_ptr++ = rows_;
*int_bytes_ptr++ = cols_;
*int_bytes_ptr++ = reduced_rows_;
*int_bytes_ptr++ = reduced_cols_;
*int_bytes_ptr++ = block_width_;
*int_bytes_ptr++ = block_height_;
*int_bytes_ptr++ = col_multiple_;
*int_bytes_ptr++ = num_threads_;
*int_bytes_ptr++ = weights_.size();
*int_bytes_ptr++ = col_deltas_.size();
*int_bytes_ptr++ = nnz_per_row_.size();
float* float_bytes_ptr = reinterpret_cast<float*>(int_bytes_ptr);
*float_bytes_ptr++ = sparsity_;
uint8_t* bytes_ptr = reinterpret_cast<uint8_t*>(float_bytes_ptr);
memcpy(bytes_ptr, weights_.data(), weights_.size() * sizeof(WeightType));
bytes_ptr += weights_.size() * sizeof(WeightType);
memcpy(bytes_ptr, col_deltas_.data(),
col_deltas_.size() * sizeof(DeltaType));
bytes_ptr += col_deltas_.size() * sizeof(DeltaType);
memcpy(bytes_ptr, nnz_per_row_.data(), nnz_per_row_.size() * sizeof(int));
bytes_ptr += nnz_per_row_.size() * sizeof(int);
csr_flatbuffer->resize(bytes);
csr_flatbuffer->assign(reinterpret_cast<char*>(bytes_ptr_ptr), bytes);
free(bytes_ptr_ptr);
return bytes;
}
void ReadFromFlatBuffer(const uint8_t* const& bytes, const std::size_t& len) {
CHECK_GE(len, FixedParameterSize());
const int* int_bytes_ptr = reinterpret_cast<const int*>(bytes);
rows_ = *int_bytes_ptr++;
cols_ = *int_bytes_ptr++;
reduced_rows_ = *int_bytes_ptr++;
reduced_cols_ = *int_bytes_ptr++;
block_width_ = *int_bytes_ptr++;
block_height_ = *int_bytes_ptr++;
col_multiple_ = *int_bytes_ptr++;
int num_threads = *int_bytes_ptr++;
int32_t weights_size = *int_bytes_ptr++;
int32_t col_deltas_size = *int_bytes_ptr++;
int32_t nnz_per_row_size = *int_bytes_ptr++;
// Make sure negative sizes don't mess things up.
weights_size = std::max(0, weights_size);
col_deltas_size = std::max(0, col_deltas_size);
nnz_per_row_size = std::max(0, nnz_per_row_size);
const float* float_bytes_ptr =
reinterpret_cast<const float*>(int_bytes_ptr);
sparsity_ = *float_bytes_ptr++;
std::size_t total_bytes =
FixedParameterSize() + weights_size * sizeof(WeightType) +
col_deltas_size * sizeof(DeltaType) + nnz_per_row_size * sizeof(int);
CHECK_EQ(total_bytes, len)
<< "total bytes: " << total_bytes << ", actual len given: " << len;
const uint8_t* bytes_ptr =
reinterpret_cast<const uint8_t*>(float_bytes_ptr);
std::vector<WeightType> weights_raw(weights_size);
memcpy(weights_raw.data(), bytes_ptr, weights_size * sizeof(WeightType));
weights_ = CacheAlignedVector<WeightType>(weights_raw);
bytes_ptr += weights_size * sizeof(WeightType);
std::vector<DeltaType> deltas_raw(col_deltas_size);
memcpy(deltas_raw.data(), bytes_ptr, col_deltas_size * sizeof(DeltaType));
col_deltas_ = CacheAlignedVector<DeltaType>(deltas_raw);
bytes_ptr += col_deltas_size * sizeof(DeltaType);
std::vector<int> nnz_raw(nnz_per_row_size);
memcpy(nnz_raw.data(), bytes_ptr, nnz_per_row_size * sizeof(int));
nnz_per_row_ = CacheAlignedVector<int>(nnz_raw);
num_threads_ = 0;
PrepareForThreads(num_threads);
}
// Multiply a Sparse matrix by a possibly dense matrix. Often the matrix is
// a vector with a small number of columns, hence the term "fat vector".
// 1x1 and 4x4 have specializations for output columns (ie fatness) > 5,
// and often achieve twice as many GFlops when multiplying a right hand side
// that has 5 or more columns. (Best is a multiple of 5).
// 16x1 doesn't have enough registers and just loops over the width 1 kernel.
//
// |rhs| and |out| are COLUMN MAJOR.
// Fast Tuples WeightType, BiasType, RhsType, OutType are:
// (float, float, float, float)
// (bfloat16, float, float, float)
// and only on ARM64. All other cases use a slow generic implementation.
template <typename RhsClass, typename BiasClass, typename OutClass,
typename BiasType = typename BiasClass::value_type,
typename OutType = typename OutClass::value_type>
void SpMM_bias(const RhsClass& rhs, const BiasClass& bias, OutClass* out,
bool relu = false, int tid = 0,
SpinBarrier* barrier = nullptr) const {
static_assert(std::is_same<typename RhsClass::value_type, RhsType>::value,
"Rhs types must match");
CHECK_LT(tid, num_threads_);
CHECK_EQ(rhs.cols(), out->cols());
CHECK_EQ(rhs.rows(), cols_);
CHECK_GE(out->rows(), rows_);
int cols_to_go = out->cols();
int rhs_index = *thread_bounds_.OffsetRhsIndices(rhs_indices_.data(), tid);
const RhsType* rhs_ptr = rhs.data() + rhs_index * block_height_;
OutType* out_ptr = thread_bounds_.OffsetOutput(out->data(), tid);
const WeightType* weights_ptr =
thread_bounds_.OffsetWeights(weights_.data(), tid);
const DeltaType* delta_ptr =
thread_bounds_.OffsetRhsIndices(col_deltas_.data(), tid);
int offset = *delta_ptr / sizeof(RhsType);
rhs_ptr -= offset;
const int* nnz_ptr = nnz_per_row_.data() + thread_bounds_.StartRow(tid);
int assigned_rows =
thread_bounds_.StartRow(tid + 1) - thread_bounds_.StartRow(tid);
const BiasType* bias_ptr = thread_bounds_.OffsetBias(bias.data(), tid);
while (cols_to_go > 0) {
if (block_width_ == 4 && block_height_ == 4) {
if (cols_to_go >= 5) {
detail::SpMM5_4x4<WeightType, RhsType, OutType>(
weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
assigned_rows, out->col_stride(), rhs.col_stride(), relu);
} else {
detail::SpMV_4x4<WeightType, RhsType, OutType>(
weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
assigned_rows, out->col_stride(), rhs.col_stride(), relu);
}
} else {
if (cols_to_go >= 5) {
detail::SpMM5_1x1<WeightType, RhsType, OutType>(
weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
assigned_rows, out->col_stride(), rhs.col_stride(), relu);
} else {
detail::SpMV_1x1<WeightType, RhsType, OutType>(
weights_ptr, delta_ptr, nnz_ptr, rhs_ptr, bias_ptr, out_ptr,
assigned_rows, out->col_stride(), rhs.col_stride(), relu);
}
}
if (cols_to_go >= 5) {
cols_to_go -= 5;
rhs_ptr += rhs.col_stride() * 5;
out_ptr += out->col_stride() * 5;
} else {
cols_to_go--;
rhs_ptr += rhs.col_stride();
out_ptr += out->col_stride();
}
if (barrier) barrier->barrier();
}
}
template <typename MVRhsType, typename MVBiasType, typename OutType>
void MatVec(const MVRhsType* rhs, const MVBiasType* bias, bool relu, int tid,
int replicas, int output_stride, OutType* output) {
CHECK_LT(tid, num_threads_);
CHECK_EQ(block_width_, 4) << "Block width must be 4!";
if (block_height_ == 8) {
matmul_.MatVec8x4(
thread_bounds_.OffsetWeights(weights_.cast_data(), tid), rhs,
thread_bounds_.OffsetBias(bias, tid), nnz_per_row_.data(),
thread_bounds_.OffsetRhsIndices(rhs_indices_.data(), tid),
thread_bounds_.StartRow(tid), thread_bounds_.StartRow(tid + 1), relu,
replicas, output_stride, thread_bounds_.OffsetOutput(output, tid));
} else {
CHECK_EQ(block_height_, 4) << "Block height must be 4 or 8!";
matmul_.MatVec4x4(
thread_bounds_.OffsetWeights(weights_.cast_data(), tid), rhs,
thread_bounds_.OffsetBias(bias, tid), nnz_per_row_.data(),
thread_bounds_.OffsetRhsIndices(rhs_indices_.data(), tid),
thread_bounds_.StartRow(tid), thread_bounds_.StartRow(tid + 1), relu,
replicas, output_stride, thread_bounds_.OffsetOutput(output, tid));
}
}
int rows() const { return rows_; }
int cols() const { return cols_; }
int block_height() const { return block_height_; }
int block_width() const { return block_width_; }
float sparsity() const { return sparsity_; }
int num_threads() const { return num_threads_; }
const ThreadBounds& thread_bounds() const { return thread_bounds_; }
const CacheAlignedVector<DeltaType>& rhs_indices() const {
return rhs_indices_;
}
const std::string& name() const { return name_; }
void set_name(const std::string& name) { name_ = name; }
const std::vector<int>& split_points() const {
return thread_bounds_.row_starts();
}
std::size_t bytes() const {
return weights_.size() * sizeof(WeightType) +
col_deltas_.size() * sizeof(DeltaType) +
nnz_per_row_.size() * sizeof(int);
}
// Multiplies a sparse matrix by a possibly dense matrix, as SpMM_bias above,
// and then samples from the output (softmax distribution) layer.
template <typename RhsClass, typename BiasClass, typename OutClass,
typename BiasType = typename BiasClass::value_type,
typename OutType = typename OutClass::value_type>
typename std::enable_if<!IsFixed32Type<OutType>::value, int>::type
SpMM_bias_Sample(const RhsClass& rhs, const BiasClass& bias, OutClass* out,
float temperature, int tid, SpinBarrier* barrier,
std::minstd_rand* gen,
CacheAlignedVector<float>* scratch) const {
SpMM_bias(rhs, bias, out, /*relu=*/false, tid, barrier);
return out->Sample(temperature, gen, scratch);
}
// Fixed32 version.
template <typename RhsClass, typename BiasClass, typename OutClass,
typename BiasType = typename BiasClass::value_type,
typename OutType = typename OutClass::value_type>
typename std::enable_if<IsFixed32Type<OutType>::value, int>::type
SpMM_bias_Sample(const RhsClass& rhs, const BiasClass& bias, OutClass* out,
float temperature, int tid, SpinBarrier* barrier,
std::minstd_rand* gen,
CacheAlignedVector<float>* scratch) const {
// We don't pass the barrier on, as we have more work to do.
SpMM_bias(rhs, bias, out, /*relu=*/false, tid);
return out->ReducingSample(gen, scratch, tid, temperature, barrier);
}
void Print() const {
std::cout << "Weights\n";
weights_.Print();
std::cout << std::endl;
std::cout << "Deltas\n";
col_deltas_.Print();
std::cout << std::endl;
std::cout << "nnz\n";
nnz_per_row_.Print();
std::cout << std::endl;
}
// Split the computation amongst threads by rows based on the number of
// non zeros, with the addition of a constant to account for the work of the
// bias and the horizontal add at the end, and also guarantees that each
// thread writes only whole cache lines, based on the size of OutType.
// The |cache_line_size| arg is used only for testing. Normally it is provided
// through the architecture #defines.
// Each thread gets a contiguous row range (|split_points|).
// Thread t does rows [ split_points[t], split_points[t + 1] )
// Each thread also needs to know how many non zeros were before it to skip
// (|nnz_to_skip|). And finally it also needs to know what the offset into
// the rhs vector would have been at the split point (|rhs_to_skip|).
//
// Some tricky corner cases where the number of non-zeros doesn't split
// nicely amongst the number of requested threads are not handled and default
// to one thread; these cases are only going to happen in tests and not in
// the matrices that correspond in real models.
//
// Returns the maximum number of threads that can be used; <= |num_threads|.
template <typename OutType = int32_t>
int PrepareForThreads(int num_threads, int cache_line_size = -1) {
CHECK_GT(num_threads, 0);
// we've already prepared for this number of threads, nothing to do
if (num_threads == num_threads_) return num_threads_;
num_threads_ = num_threads;
thread_bounds_.PrepareForThreads(
block_width_, block_height_, num_threads_,
ReducedRowsPerCacheLine<OutType>(cache_line_size), reduced_rows_,
nnz_per_row_.data());
return num_threads_;
}
// Computes and stores the |rhs_indices_| from the |col_deltas_|.
void ComputeRHSIndices() {
std::vector<int> cumulative_deltas = CumulativeColDeltas();
std::vector<DeltaType> rhs_indices(cumulative_deltas.size() +
reduced_rows_);
int total_indices = 0;
int delta_index = 0;
for (int r = 0; r < reduced_rows_; ++r) {
for (int n = 0; n < nnz_per_row_[r]; ++n, ++delta_index) {
rhs_indices[total_indices++] =
cumulative_deltas[delta_index] / block_width_;
}
}
rhs_indices_ = CacheAlignedVector<DeltaType>(rhs_indices);
}
// Computes and stores the |col_deltas_| from the |rhs_indices_|.
void ComputeColDeltas() {
std::vector<int> col_deltas(rhs_indices_.size());
int prev_index = 0;
for (int i = 0; i < rhs_indices_.size(); ++i) {
int offset = rhs_indices_[i] - prev_index;
prev_index = rhs_indices_[i];
col_deltas[i] = offset * block_width_ * sizeof(RhsType);
}
col_deltas_ = CacheAlignedVector<DeltaType>(col_deltas);
}
// Computes and returns the inclusive prefix sum of the deltas, ie absolute
// positions.
std::vector<int> CumulativeColDeltas() const {
std::vector<int> cum_col_deltas(col_deltas_.size());
for (int i = 0; i < col_deltas_.size(); ++i) {
cum_col_deltas[i] = col_deltas_[i] / sizeof(RhsType);
if (i > 0) cum_col_deltas[i] += cum_col_deltas[i - 1];
}
return cum_col_deltas;
}
private:
constexpr std::size_t FixedParameterSize() const {
return sizeof(int) // rows
+ sizeof(int) // cols
+ sizeof(int) // reduced_rows
+ sizeof(int) // reduced_cols
+ sizeof(int) // block_width
+ sizeof(int) // block_height
+ sizeof(float) // sparsity
+ sizeof(int) // col_multiple
+ sizeof(int) // num_threads_
+ sizeof(int) // weights_.size()
+ sizeof(int) // col_deltas_.size()
+ sizeof(int); // nnz_per_row_.size()
}
// Possible block sizes are only those that are supported by the computation
// default is 1x1, other options are 4x4 and 16x1.
template <typename InputType>
void DetermineBlockSize(const MaskedSparseMatrix<InputType>& masked_matrix) {
const std::vector<std::pair<int, int>> kPreferredOrder = {{4, 4}};
int rows = masked_matrix.rows();
int cols = masked_matrix.cols();
for (const auto& block_size : kPreferredOrder) {
int block_height, block_width;
std::tie(block_height, block_width) = block_size;
if (cols % block_width != 0) continue;
int reduced_rows = (rows + block_height - 1) / block_height;
int reduced_cols = cols / block_width;
// For each possible block, confirm that it is either all 0s or all 1s.
bool all_same = true;
const auto& mask = masked_matrix.mask();
for (int r = 0; r < reduced_rows; ++r) {
for (int c = 0; c < reduced_cols; ++c) {
int val = mask[r * block_height * cols + c * block_width];
for (int i = 0; i < block_height; ++i) {
for (int j = 0; j < block_width; ++j) {
int index = (r * block_height + i) * cols + c * block_width + j;
if (index < masked_matrix.mask().size()) {
all_same &= (masked_matrix.mask()[index] == val);
}
}
}
}
}
// If this block configuration is possible, accept it.
if (all_same) {
block_height_ = block_height;
block_width_ = block_width;
return;
}
}
// No large blocks were found, default to 1x1.
block_height_ = 1;
block_width_ = 1;
}
// CSR descriptors are for the reduced matrix, weights is the full matrix.
template <typename InputType>
void MakeColumnsMultiple(const std::vector<int>& row_offsets,
std::vector<int>* reduced_mask,
std::vector<InputType>* weights) {
if (col_multiple_ > 0) {
// Make sure each row has a number of columns that is a multiple of
// |col_multiple|.
for (int r = 1; r < row_offsets.size(); ++r) {
int num_row = row_offsets[r] - row_offsets[r - 1];
int num_needed = col_multiple_ - num_row % col_multiple_;
if (num_needed < col_multiple_) {
// Find gaps in the columns where we can insert a column of 0 weights.
int num_added = 0;
for (int c = 0; c < reduced_cols_; ++c) {
if ((*reduced_mask)[(r - 1) * reduced_cols_ + c] == 0) {
(*reduced_mask)[(r - 1) * reduced_cols_ + c] = 1;
// Zero out the weights that correspond to this block.
for (int i = 0; i < block_height_; ++i) {
for (int j = 0; j < block_width_; ++j) {
(*weights)[((r - 1) * block_height_ + i) * cols_ +
block_width_ * c + j] = InputType(0.f);
}
}
num_added++;
}
if (num_added == num_needed) break;
}
}
}
}
}
// Given the final dense mask and weights, convert to the compressed
// block CSR representation.
template <typename InputType>
void MaskAndWeightsToCsr(const std::vector<int>& mask,
const std::vector<InputType>& weights,
std::vector<int>* nnz_per_row,
std::vector<int>* col_indices,
std::vector<WeightType>* weights_csr) {
std::vector<int> row_offsets = {0};
int nnz = 0;
// Standard CSR format.
if (block_width_ == 1 && block_height_ == 1) {
for (int r = 0; r < rows_; ++r) {
for (int c = 0; c < cols_; ++c) {
if (mask[r * cols_ + c] == 1) {
nnz++;
col_indices->push_back(c);
weights_csr->push_back(WeightType(weights[r * cols_ + c]));
}
}
row_offsets.push_back(nnz);
}
} else if (block_width_ == 4 && block_height_ == 4) {
// Weights are stored contiguously for each block in this case.
for (int r = 0; r < reduced_rows_; ++r) {
for (int c = 0; c < reduced_cols_; ++c) {
if (mask[r * reduced_cols_ + c] == 1) {
col_indices->push_back(c);
nnz++;
for (int i = 0; i < block_height_; ++i) {
for (int j = 0; j < block_width_; ++j) {
int row_index = (block_height_ * r + i) * cols_;
int w_index = row_index + block_width_ * c + j;
WeightType weight = w_index < weights.size()
? WeightType(weights[w_index])
: WeightType(0.0f);
weights_csr->push_back(weight);
}
}
}
}
row_offsets.push_back(nnz);
}
}
for (int i = 1; i < row_offsets.size(); ++i)
nnz_per_row->push_back(row_offsets[i] - row_offsets[i - 1]);
}
// Returns the number of block rows per cache line. This is the minimum unit
// into which the calculation is broken for threads.
template <typename OutType>
int ReducedRowsPerCacheLine(int override_cache_line_size = -1) const {
int line_size = kCacheLineSize;
if (override_cache_line_size >= 1) line_size = override_cache_line_size;
return std::max<int>(line_size / (block_height_ * sizeof(OutType)), 1);
}
int col_multiple_;
int rows_;
int cols_;
int reduced_rows_;
int reduced_cols_;
float sparsity_;
int block_width_;
int block_height_;
int num_threads_;
std::string name_;
CacheAlignedVector<WeightType> weights_;
CacheAlignedVector<DeltaType> col_deltas_;
CacheAlignedVector<int> nnz_per_row_;
// |thread_bounds_| and |rhs_indices_| don't need to be serialized as they are
// always recalculated from serialized data.
CacheAlignedVector<DeltaType> rhs_indices_;
Matmul<WeightType, RhsType> matmul_;
ThreadBounds thread_bounds_;
static constexpr int kCacheLineSize = 64;
};
// Converts a sparse matrix represented with (|mask|, |weights|, |size|) into
// the CSR format, and returns that as a serialized string.
template <typename MaskType>
std::string ConvertDenseToSparseRepresentation_Int16Deltas(
const std::vector<MaskType>& mask, const std::vector<float>& weights,
const int rows, const int cols) {
MaskedSparseMatrix<float> masked_weights(rows, cols, mask.data(),
weights.data());
CsrBlockSparseMatrix<csrblocksparse::bfloat16, float, int16_t>
sparse_masked_weights(masked_weights);
std::string buffer;
sparse_masked_weights.WriteToFlatBuffer(&buffer);
return buffer;
}
} // namespace csrblocksparse
#endif // LYRA_CODEC_SPARSE_MATMUL_LAYERS_CSR_BLOCKSPARSE_MATRIX_H_
|