File size: 8,013 Bytes
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "sparse_matmul/layers/utils.h"

#include <algorithm>
#include <cmath>
#include <random>
#include <type_traits>
#include <vector>

#include "absl/flags/flag.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "include/ghc/filesystem.hpp"
#include "sparse_matmul/layers/csr_blocksparse_matrix.h"
#include "sparse_matmul/layers/errno_mapping.h"
#include "sparse_matmul/layers/sparse_linear_layer.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/float16_types.h"
#include "sparse_matmul/numerics/test_utils.h"
#include "sparse_matmul/numerics/type_utils.h"
#include "sparse_matmul/vector/cache_aligned_vector.h"

namespace csrblocksparse {
namespace {

static constexpr char kTempOutputDir[] =
    "third_party/lyra_codec/sparse_matmul/layers/testdata/";
static constexpr int kTestExponentBits = 5;

template <typename ComputeType>
class CsrBlockSparseMatrixUtilsTest : public testing::Test {
 protected:
  CsrBlockSparseMatrixUtilsTest()
      : output_dir_((ghc::filesystem::path(testing::TempDir()) / kTempOutputDir)
                        .string()) {
    if (std::is_floating_point<ComputeType>::value) {
      tolerance_ = 1e-5;
    } else if (csrblocksparse::IsCustomFloatType<ComputeType>::value) {
      // Casting float --> bfloat truncates the least significant 16 bits from
      // the mantissa, thus the larger the exponent bits the larger the rounding
      // error.
      // The exponent for max_val is 2^4, meaning the max rounding error
      // for the weight input is ~ 0.124. The tolerance is 2x this because
      // although the intermediate multiplications are accumulated in float,
      // the output is cast to bfloat.
      // Placeholder for internal diagram.
      float max_val =
          std::pow<float>(2, kTestExponentBits) -
          std::pow<float>(2, -fixed16<kTestExponentBits>::kMantissaBits);
      tolerance_ = 2 * (max_val - static_cast<float>(ComputeType(max_val)));
    } else {
      tolerance_ = std::pow<float>(2, -MantissaBitsOf<ComputeType>::value);
    }
  }

  void SetUp() override {
    std::error_code error_code;
    ghc::filesystem::create_directories(output_dir_, error_code);
    ASSERT_FALSE(error_code);
  }

  void TearDown() override {
    std::error_code error_code;
    ghc::filesystem::remove_all(output_dir_, error_code);
    ASSERT_FALSE(error_code);
  }

  const std::string output_dir_;
  float tolerance_;
};

void GenerateRandomWeightBiasMaskVectors(
    int weight_vector_size, int bias_vector_size,
    std::vector<float>* weight_vector, std::vector<float>* bias_vector,
    std::vector<float>* mask_vector, std::vector<float>* masked_weight_vector) {
  weight_vector->resize(weight_vector_size);
  bias_vector->resize(bias_vector_size);
  mask_vector->resize(weight_vector_size);
  masked_weight_vector->resize(weight_vector_size);
  // Fill Weight and Bias with random values between +/-[2^|kTestExponentBits| -
  // 1] - 0.5 to prevent clipping in the fixed16 case when the weight and bias
  // are added with all 1s in the exponent and mantissa.
  const float max_abs_random_value =
      std::pow<float>(2, kTestExponentBits - 1) - 0.5;
  std::uniform_real_distribution<float> distribution(-max_abs_random_value,
                                                     max_abs_random_value);
  std::default_random_engine generator(1337);
  std::generate(weight_vector->begin(), weight_vector->end(),
                [&]() { return distribution(generator); });
  std::generate(bias_vector->begin(), bias_vector->end(),
                [&]() { return distribution(generator); });
  std::bernoulli_distribution mask_distribution(0.5);
  std::generate(mask_vector->begin(), mask_vector->end(),
                [&]() { return mask_distribution(generator) ? 1 : 0; });
  // Construct the combined weight and mask vector.
  std::transform(mask_vector->begin(), mask_vector->end(),
                 weight_vector->begin(), masked_weight_vector->begin(),
                 [&](float mask_value, float weight_value) {
                   return mask_value * weight_value;
                 });
}

using ComputeTypes =
    testing::Types<float, csrblocksparse::fixed16<kTestExponentBits>,
                   csrblocksparse::bfloat16>;
TYPED_TEST_SUITE(CsrBlockSparseMatrixUtilsTest, ComputeTypes);

TYPED_TEST(CsrBlockSparseMatrixUtilsTest, LoadLayer) {
  const int kWeightVectorSize = 16;
  const int kBiasVectorSize = 4;
  std::vector<float> ref_weight_vector;
  std::vector<float> ref_bias_vector;
  std::vector<float> ref_mask_vector;
  std::vector<float> ref_masked_weight_vector;

  GenerateRandomWeightBiasMaskVectors(
      kWeightVectorSize, kBiasVectorSize, &ref_weight_vector, &ref_bias_vector,
      &ref_mask_vector, &ref_masked_weight_vector);

  // This fixed16_weights.raw vector should only be read by LoadGenericLayer
  // when |TypeParam| is a fixed16_type.
  std::vector<int16_t> fixed_weight_vector(ref_weight_vector.size());
  std::transform(ref_weight_vector.begin(), ref_weight_vector.end(),
                 fixed_weight_vector.begin(), [](float weight) {
                   return fixed16<kTestExponentBits>(weight).raw_val();
                 });
  ASSERT_TRUE(WriteArrayToFile(fixed_weight_vector, "fixed16_weights.raw",
                               this->output_dir_)
                  .ok());
  ASSERT_TRUE(
      WriteArrayToFile(ref_weight_vector, "weights.raw", this->output_dir_)
          .ok());
  ASSERT_TRUE(
      WriteArrayToFile(ref_bias_vector, "bias.raw", this->output_dir_).ok());
  ASSERT_TRUE(
      WriteArrayToFile(ref_mask_vector, "mask.raw", this->output_dir_).ok());

  // Read in the weights, mask, and bias to a layer.
  SparseLinearLayer<TypeParam, TypeParam> actual_layer;
  using DiskWeightType =
      typename std::conditional<csrblocksparse::IsFixed16Type<TypeParam>::value,
                                csrblocksparse::fixed16_type, TypeParam>::type;
  auto status = LoadGenericLayer<TypeParam, TypeParam, DiskWeightType>(
      /*prefix=*/"", /*zipped=*/false, this->output_dir_,
      /*default_bias=*/0.f, &actual_layer);
  ASSERT_TRUE(status.ok());
  // Multiply the read in layer with an identity matrix so we just get
  // the weights added with bias.
  std::vector<TypeParam> identity(kBiasVectorSize * kBiasVectorSize,
                                  TypeParam(0.f));
  for (int i = 0; i < identity.size(); i += kBiasVectorSize + 1) {
    identity.at(i) = TypeParam(1.f);
  }
  FatCacheAlignedVector<TypeParam> masked_weights_plus_bias(kBiasVectorSize,
                                                            kBiasVectorSize);
  actual_layer.SpMM_bias(
      VectorView<TypeParam>(identity.data(), /*rows=*/kBiasVectorSize,
                            /*cols=*/kBiasVectorSize),
      &masked_weights_plus_bias);
  // |masked_weights_plus_bias| - bias = masked weights.
  for (int col = 0; col < masked_weights_plus_bias.cols(); col++) {
    MutableVectorView<TypeParam> col_data = masked_weights_plus_bias.slice(col);
    for (int row = 0; row < masked_weights_plus_bias.rows(); row++) {
      int flat_index = row * masked_weights_plus_bias.cols() + col;
      EXPECT_NEAR(static_cast<float>(col_data[row]) - ref_bias_vector.at(row),
                  ref_masked_weight_vector.at(flat_index), this->tolerance_);
    }
  }
}
}  // namespace
}  // namespace csrblocksparse