Spaces:
Runtime error
Runtime error
File size: 53,091 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_NUMERICS_FAST_TRANSCENDENTALS_H_
#define LYRA_CODEC_SPARSE_MATMUL_NUMERICS_FAST_TRANSCENDENTALS_H_
#include <cstdint>
#if defined __ARM_NEON || defined __aarch64__
#include <arm_neon.h>
#else
#include <algorithm>
#endif
#if defined __AVX__ || defined __AVX2__
#include <immintrin.h>
#endif
#include <math.h>
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/type_utils.h"
namespace csrblocksparse {
// The input to exp is clipped to bounds that prevent overflow/underflow in a
// 32 bit float representation. e^80 ~ 6e34, which is close to maxfloat.
constexpr float kMaxExpInput = 80.f;
constexpr int kMaxExpInputInt = static_cast<int>(kMaxExpInput);
constexpr float kMinExpInput = -80.f;
// tanh(9) ~ 0.99999997, which cannot be resolved from 1 in a float32.
constexpr float kMaxTanhInput = 9.f;
constexpr float kMinTanhInput = -9.f;
// sigmoid(18) ~ 0.999999985, which cannot be resolved from 1 in a float32.
constexpr float kMaxSigmoidInput = 18.f;
constexpr float kMinSigmoidInput = -18.f;
// kAConstant ~= 2^23 / ln 2
constexpr uint32_t kAConstant = 0x4b38aa3b;
// kBConstant ~= (127 << 23) - 366000
constexpr uint32_t kBConstant = 0x4e7de9a9;
// Coefficients of the rational approximation to tanh.
// Coefficients of the numerator polynomial (odd).
constexpr float kTanhAlpha1 = 4.89352455891786e-03;
constexpr float kTanhAlpha3 = 6.37261928875436e-04;
constexpr float kTanhAlpha5 = 1.48572235717979e-05;
constexpr float kTanhAlpha7 = 5.12229709037114e-08;
constexpr float kTanhAlpha9 = -8.60467152213735e-11;
constexpr float kTanhAlpha11 = 2.00018790482477e-13;
constexpr float kTanhAlpha13 = -2.76076847742355e-16;
// The monomial coefficients of the denominator polynomial (even).
constexpr float kTanhBeta0 = 4.89352518554385e-03;
constexpr float kTanhBeta2 = 2.26843463243900e-03;
constexpr float kTanhBeta4 = 1.18534705686654e-04;
constexpr float kTanhBeta6 = 1.19825839466702e-06;
// Coefficients of the rational approximation to sigmoid.
// Coefficients of the numerator polynomial (odd).
constexpr float kSigmoidAlpha1 = 2.48287947061529e-01;
constexpr float kSigmoidAlpha3 = 8.51377133304701e-03;
constexpr float kSigmoidAlpha5 = 6.08574864600143e-05;
constexpr float kSigmoidAlpha7 = 1.15627324459942e-07;
constexpr float kSigmoidAlpha9 = 4.37031012579801e-11;
// The monomial coefficients of the denominator polynomial (even).
constexpr float kSigmoidBeta0 = 9.93151921023180e-01;
constexpr float kSigmoidBeta2 = 1.16817656904453e-01;
constexpr float kSigmoidBeta4 = 1.70198817374094e-03;
constexpr float kSigmoidBeta6 = 6.29106785017040e-06;
constexpr float kSigmoidBeta8 = 5.76102136993427e-09;
constexpr float kSigmoidBeta10 = 6.10247389755681e-13;
// x is the first term of the Taylor series approximation of tanh near 0 and
// because the leading error term of tanh(x) - x is O(x^3), it is good for a
// wide interval, use it in this region where the other approximation is
// inaccurate. tanh(x) = x - x^3 / 3 + 2x^5 / 15 - 17x^7 / 315 + ...
// Similarly for sigmoid where the first term is .25x
constexpr float kTanhLinearRegion = .15f;
constexpr float kSigmoidLinearRegion = .75f;
// Maximum shift factor for 1/log 2 to keep it inside int32.
constexpr int kMaxLog2Shift = 30;
static const int kLogFactor = static_cast<int>((1 << kMaxLog2Shift) / log(2.f));
static const float kOneOverLog2 = 1.0f / log(2.f);
// Number of real mantissa bits in IEEE float32.
constexpr int kFloatMantissaBits = 23;
// Offset to correct the exponent value in the resulting float.
constexpr int kFloatExponentOffset = 127 << kFloatMantissaBits;
// Mask for mantissa.
constexpr int kFloatMantissaMask = (1 << kFloatMantissaBits) - 1;
// Mask for exponent;
constexpr int kFloatExponentMask = (-1) ^ kFloatMantissaMask;
// ========== COMMON DOCUMENTATION FOR THE FLOATING EXPONENT TRICK ============
// Summary: Use the exponent-mantissa representation of a floating point number
// to give exponentiation of 2 for free. If we desire f(z) = e^z = 2^(x+n), (for
// some fixed-point z expressed as an integer with imaginary binary point within
// it) then we have to compute x+n = z / ln 2 and then splitting x+n into
// n = int(x+n) and x = fract(x+n) in [0, 1), we can use n and 2^x as the
// exponent and mantissa of a floating point number, and that float is equal to
// e^z. For original reference see:
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.4508&rep=rep1&type=pdf
// Important detail:
// IEEE floats are stored normalized, ie 1.bbbbbbb... x 2^exponent. The leading
// 1 bit is not actually stored, (as it is always 1), providing an extra bit of
// precision.
// Since 2^0=1 and 2^1=2, we can treat the problem as 2^x = 1 + u and we thus
// need a mapping x in [0, 1) -> u in [0, 1) and the 1 + is provided by the
// representation.
// In the original paper cited above, the mapping is u = x - c, where c is set
// to minimize the average error. The function to compute exp(x) this way is
// incredibly simple and computationally cheap, but not very accurate.
// Fortunately, the problem has been reduced to u = 2^x - 1 over [0, 1) for
// which it is far easier to construct accurate approximations with small
// polynomials than a full range exp(x), and this is what the cubic and quartic
// versions below do. An important feature of these functions is that they
// constrain the solution to be exact at 0 and 1 so there is continuity at each
// integer boundary where we wrap from 1 to 0 and increment the power of 2.
// Coefficients for quartic representation of 2^x - 1 for x on [0,1).
// The quartic representation is 2^x - 1 ~ x - x(1-x)(ax^2 + bx + c), hence the
// coefficients of a quadratic are all that is required.
// Coefficients came from numerical experiments.
constexpr float kExpQuarticFactor2 = 0.0135302434f;
constexpr float kExpQuarticFactor1 = 0.0656107542f;
constexpr float kExpQuarticFactor0 = 0.306963906f;
// Coefficients for cubic representation of 2^x - 1 for x on [0,1]
// The cubic representation is 2^x - 1 ~ x - x(1-x)(mx + c), hence the
// coefficients of a linear function are all that is required.
// Coefficients came from numerical experiments.
constexpr float kExpCubicFactor1 = 0.0780252018f;
constexpr float kExpCubicFactor0 = 0.304684167f;
// Coefficients are optimized to minimize the absolute error on
// tanh = (e^2x - 1) / (e^2x + 1) instead of on pure e^x.
// Enum that determines how a transcendental is computed.
enum TranscendentalMode {
// Cubic using 16 bit integer arithmetic.
TM_ORDER3_16BIT,
// Quartic using 16 bit integer arithmetic.
TM_ORDER4_16BIT,
// Quartic using 32 bit float arithmetic.
TM_ORDER4_FLOAT,
};
inline int FloatAsInt16(float x) {
return static_cast<int>(x * (1 << 15) + 0.5f);
}
inline int FloatAsInt32(float x) {
return static_cast<int>(x * (1 << 30) + 0.5f);
}
#if defined __ARM_NEON || defined __aarch64__
constexpr int kMaxSigmoidInputInt = static_cast<int>(kMaxSigmoidInput);
// Computes and returns 2^(x>>23) ie 2^u where x = u << 23 bits.
// Uses the quartic floating point exponent trick, see COMMON DOCUMENTATION FOR
// THE FLOATING EXPONENT TRICK above for details.
// Returns the true value, ie not scaled.
inline float32x4_t float32_pow2(float32x4_t x) {
// The input is already shifted left by 23 bits, so when we convert to int,
// the bottom 23 bits are the fractional part, and the top bits are the
// integer part. We want to compute a function of the fractional part, so
// we will mask it off and manipulate it.
int32x4_t exp_int_x = vcvtq_s32_f32(x);
// Mask to allow conversion of just the fractional part of x to fixed16<0>.
int32x4_t mantissa_mask16 = vdupq_n_s32(0x7fff00);
// Mask to allow conversion of just the fractional part of x to fixed32<1>.
int32x4_t mantissa_mask32 = vdupq_n_s32(0x7fffff);
// Narrowing shift to convert to fixed16<0>.
int16x4_t x_16 = vshrn_n_s32(vandq_s32(mantissa_mask16, exp_int_x), 8);
// Shift to convert to fixed32<1>.
int32x4_t x_32 = vshlq_n_s32(vandq_s32(mantissa_mask32, exp_int_x), 7);
// Compute the polynomial x(x - 1)(ax^2 + bx + c) of the fractional part.
// Ordering these lines carefully makes it faster, as some of the multiply
// operations can pipeline instead of waiting for the previous result.
int32x4_t x_squared = vmull_s16(x_16, x_16);
int16x4_t b = vdup_n_s16(FloatAsInt16(kExpQuarticFactor1));
int32x4_t c = vdupq_n_s32(FloatAsInt32(kExpQuarticFactor0));
int32x4_t bx_plus_c = vmlal_s16(c, b, x_16);
int16x4_t a = vdup_n_s16(FloatAsInt16(kExpQuarticFactor2));
// Finish the quadratic: result = ax^2 + bx + c.
int32x4_t result = vmlal_s16(bx_plus_c, a, vshrn_n_s32(x_squared, 15));
int32x4_t x_squared_minus_x = vsubq_s32(x_squared, x_32);
// Multiply by x^2 - x.
result = vqrdmulhq_s32(result, x_squared_minus_x);
// Shift back to mantissa position. vqrdmulhq_s32 took 2x 30-mantissa bit
// inputs, made 60-mantissa bit result, doubled it to 61 bits, then discarded
// the bottom 32 making 29, so shift right 6 to get 23.
result = vshrq_n_s32(result, 6);
// Add the constant to normalize the exponent for IEEE format.
int32x4_t exp_offset = vdupq_n_s32(kFloatExponentOffset);
exp_int_x = vaddq_s32(exp_int_x, exp_offset);
exp_int_x = vaddq_s32(exp_int_x, result);
// Cast back to float, as we just computed the exponent and mantissa and
// assembled them in IEEE format.
return vreinterpretq_f32_s32(exp_int_x);
}
// Scaled float to float exp approximation, using a quartic refinement of
// the exponent trick. See COMMON DOCUMENTATION FOR THE FLOATING EXPONENT TRICK
// above for details. Input is a fixed32<31 - mantissa_bits> that has been
// converted to a float without any further shifting. MUST HAVE ALREADY BEEN
// CLIPPED to a suitable range for exp!
// Returns a vector of standard unscaled floats.
inline float32x4_t fixed32_exp_float_preclipped(const int mantissa_bits,
float32x4_t x) {
// Divide by log 2 to convert problem to 2^x, and scale to match the
// mantissa bits required by IEEE floats.
// This is the shift of the FP mantissa relative to the input mantissa.
const int kXShift = kFloatMantissaBits - mantissa_bits;
const float kLogFactor = static_cast<float>(1 << kXShift);
float32x4_t factor = vdupq_n_f32(kLogFactor * kOneOverLog2);
float32x4_t y = vmulq_f32(x, factor);
// Now compute 2^x.
return float32_pow2(y);
}
// uses trick that 2^x can be computed by shifting integer into the
// exponent, see the following reference for a derivation using double:
// goo.gl/aUVTK3
// Input x is clamped to [-64, 64], even infinity and NaN.
// Accurate to within 3% relative across the entire range.
// Fully pipelined throughput is about 10 cycles per fast_exp call.
inline float32x4_t fast_exp(float32x4_t x) {
#if defined FAST_TRANSCENDENTALS && __ARM_ARCH >= 800
// Uses vcvtnq_s32_f32, not available on ARM v7 NEON.
// Load A and B, which are defined as integers into float registers.
float32x4_t A = vreinterpretq_f32_u32(vdupq_n_u32(kAConstant));
float32x4_t res = vreinterpretq_f32_u32(vdupq_n_u32(kBConstant));
// Make sure x within the allowed range.
x = vminq_f32(x, vdupq_n_f32(kMaxExpInput));
x = vmaxq_f32(x, vdupq_n_f32(kMinExpInput));
// res = A * x + B.
// This shifts x into the exponent field and adds the bias.
res = vmlaq_f32(res, A, x);
// Convert back to an integer, this is what uses the floating point
// unit to compute 2^x.
int32x4_t x_int = vcvtnq_s32_f32(res);
return vreinterpretq_f32_s32(x_int);
#else
float32x4_t return_val = vdupq_n_f32(0.f);
float exponent = expf(vgetq_lane_f32(x, 0));
return_val = vld1q_lane_f32(&exponent, return_val, 0);
exponent = expf(vgetq_lane_f32(x, 1));
return_val = vld1q_lane_f32(&exponent, return_val, 1);
exponent = expf(vgetq_lane_f32(x, 2));
return_val = vld1q_lane_f32(&exponent, return_val, 2);
exponent = expf(vgetq_lane_f32(x, 3));
return_val = vld1q_lane_f32(&exponent, return_val, 3);
return return_val;
#endif // FAST_TRANSCENDENTALS
}
// This version does a conversion of the input to floating point, then calls
// the floating point fast_exp function. There is another version
// fast_exp_fixed, that never does a conversion and is less accurate, but much
// faster.
template <int ExponentBits>
inline float32x4_t fast_exp(int32x4_t x) {
return fast_exp(vcvtq_n_f32_s32(x, 31 - ExponentBits));
}
// Performs an exp estimate without doing any floating point operations. The
// result is a floating point number. See scalar version for an explanation.
template <int ExponentBits>
inline float32x4_t fast_exp_fixed(int32x4_t x) {
static_assert(ExponentBits > 8, "Must have more than 8 ExponentBits");
constexpr int kA = 1.4426950408889634 * (1 << (ExponentBits - 8));
constexpr int kB = (127 << 23) - 366000;
constexpr int maxInput = 80 << (31 - ExponentBits);
constexpr int minInput = -maxInput;
int32x4_t A = vdupq_n_s32(kA);
int32x4_t res = vdupq_n_s32(kB);
// Make sure x within the allowed range.
x = vminq_s32(x, vdupq_n_s32(maxInput));
x = vmaxq_s32(x, vdupq_n_s32(minInput));
// res = A * x + B.
// This shifts x into the exponent field and adds the bias.
res = vmlaq_s32(res, A, x);
return vreinterpretq_f32_s32(res);
}
// fast_exp_norange_check uses vcvtnq_s32_f32, not available on ARM v7 NEON.
#if __ARM_ARCH >= 800
namespace detail {
// tanh can do range check once.
// Input x is clamped to [-64, 64], even infinity and NaN.
inline float32x4_t fast_exp_norange_check(float32x4_t x) {
float32x4_t A = vreinterpretq_f32_u32(vdupq_n_u32(kAConstant));
float32x4_t res = vreinterpretq_f32_u32(vdupq_n_u32(kBConstant));
res = vmlaq_f32(res, A, x);
int32x4_t x_int = vcvtnq_s32_f32(res);
return vreinterpretq_f32_s32(x_int);
}
} // namespace detail
#endif // __ARM_ARCH >= 800
// Clips float input to [-kLimit,kLimit].
inline float32x4_t ClipToFloatBounds(const float kLimit, const float32x4_t x) {
// Clip to the input bounds for this approximation.
float32x4_t clip_limit = vdupq_n_f32(kLimit);
float32x4_t clipped_x = vminq_f32(x, clip_limit);
clip_limit = vnegq_f32(clip_limit);
return vmaxq_f32(clipped_x, clip_limit);
}
inline float32x4_t float_tanh_float(const float32x4_t& x) {
float32x4_t clipped_x = ClipToFloatBounds(kMaxTanhInput, x);
// Divide by log 2 to convert problem to 2^x, double (as we need exp(2x)) and
// scale to the mantissa bits required by float32_pow2 all in one multiply.
// Add one to double the input.
const float kLogFactor = static_cast<float>(1 << (kFloatMantissaBits + 1));
float32x4_t factor = vdupq_n_f32(kLogFactor * kOneOverLog2);
clipped_x = vmulq_f32(clipped_x, factor);
// Now compute 2^x.
float32x4_t exp_result = float32_pow2(clipped_x);
// Now compute tanh using (e^2x - 1) / (e^2x + 1).
float32x4_t one = vdupq_n_f32(1.0f);
float32x4_t numerator = vsubq_f32(exp_result, one);
float32x4_t denominator = vaddq_f32(exp_result, one);
float32x4_t recp = vrecpeq_f32(denominator);
// Newton-Raphson iteration, accuracy is important for audio quality
recp = vmulq_f32(recp, vrecpsq_f32(recp, denominator));
recp = vmulq_f32(recp, numerator);
// Compute 3rd-order Taylor tanh ~ x - x^3/3 for high accuracy and thus low
// relative error close to 0.
float32x4_t third = vdupq_n_f32(1.0f / 3.0f);
float32x4_t taylor = vmulq_f32(x, x);
taylor = vmulq_f32(taylor, x);
taylor = vmulq_f32(taylor, third);
taylor = vsubq_f32(x, taylor);
// Test |x| <= 1/9, roughly where the errors cross over, without needing yet
// another constant.
float32x4_t ninth = vmulq_f32(third, third);
uint32x4_t cmp_results = vcaleq_f32(x, ninth);
return vbslq_f32(cmp_results, taylor, recp);
}
// Calculates (exp(x) - exp(-x)) / (exp(x) + exp(-x)).
// Input x is clamped to [-9, 9], even infinity and NaN.
// See test program for bounds. Throughput of FAST is 334 Mega/sec,
// throughput of accurate is 232 Mega/sec.
inline float32x4_t fast_tanh(float32x4_t x) {
#if defined FASTER_TRANSCENDENTALS
return float_tanh_float(x);
#elif defined ACCURATE_TRANSCENDENTAL_APPROX && defined FAST_TRANSCENDENTALS
x = vminq_f32(x, vdupq_n_f32(kMaxTanhInput));
x = vmaxq_f32(x, vdupq_n_f32(kMinTanhInput));
// The monomial coefficients of the numerator polynomial (odd).
const float32x4_t alpha_1 = vdupq_n_f32(kTanhAlpha1);
const float32x4_t alpha_3 = vdupq_n_f32(kTanhAlpha3);
const float32x4_t alpha_5 = vdupq_n_f32(kTanhAlpha5);
const float32x4_t alpha_7 = vdupq_n_f32(kTanhAlpha7);
const float32x4_t alpha_9 = vdupq_n_f32(kTanhAlpha9);
const float32x4_t alpha_11 = vdupq_n_f32(kTanhAlpha11);
const float32x4_t alpha_13 = vdupq_n_f32(kTanhAlpha13);
// The monomial coefficients of the denominator polynomial (even).
const float32x4_t beta_0 = vdupq_n_f32(kTanhBeta0);
const float32x4_t beta_2 = vdupq_n_f32(kTanhBeta2);
const float32x4_t beta_4 = vdupq_n_f32(kTanhBeta4);
const float32x4_t beta_6 = vdupq_n_f32(kTanhBeta6);
// Since the polynomials are odd/even, we need x^2.
const float32x4_t x2 = vmulq_f32(x, x);
// Evaluate the numerator polynomial |p|.
float32x4_t p = vmlaq_f32(alpha_11, x2, alpha_13);
p = vmlaq_f32(alpha_9, x2, p);
p = vmlaq_f32(alpha_7, x2, p);
p = vmlaq_f32(alpha_5, x2, p);
p = vmlaq_f32(alpha_3, x2, p);
p = vmlaq_f32(alpha_1, x2, p);
p = vmulq_f32(x, p);
// Evaluate the denominator polynomial p.
float32x4_t q = vmlaq_f32(beta_4, x2, beta_6);
q = vmlaq_f32(beta_2, x2, q);
q = vmlaq_f32(beta_0, x2, q);
// Divide the numerator by the denominator.
float32x4_t recp = vrecpeq_f32(q);
recp = vmulq_f32(recp, vrecpsq_f32(recp, q));
return vmulq_f32(p, recp);
#elif defined FAST_TRANSCENDENTALS && __ARM_ARCH >= 800
// Uses vcvtnq_s32_f32, not available on ARM v7 NEON.
x = vminq_f32(x, vdupq_n_f32(kMaxTanhInput));
x = vmaxq_f32(x, vdupq_n_f32(kMinTanhInput));
float32x4_t exp_est = detail::fast_exp_norange_check(x);
float32x4_t neg_exp_est = detail::fast_exp_norange_check(-x);
// If we're in the linear region.
// caleq = compare absolute <=
uint32x4_t cmp_results = vcaleq_f32(x, vdupq_n_f32(kTanhLinearRegion));
float32x4_t diff = vsubq_f32(exp_est, neg_exp_est);
float32x4_t sum = vaddq_f32(exp_est, neg_exp_est);
float32x4_t recp = vrecpeq_f32(sum);
recp = vmulq_f32(recp, vrecpsq_f32(recp, sum));
float32x4_t tanh_estimate = vmulq_f32(diff, recp);
// Based on comparison, possibly copy x through instead of calculated value.
// TODO(b/191497441): Is the compiler generating VBIT or VBSL ? VBIT is one
// cycle and VBSL is two... documentation suggests it can do either.
return vbslq_f32(cmp_results, x, tanh_estimate);
#else
float32x4_t return_val = vdupq_n_f32(0.f);
float tanh_value = tanhf(vgetq_lane_f32(x, 0));
return_val = vld1q_lane_f32(&tanh_value, return_val, 0);
tanh_value = tanhf(vgetq_lane_f32(x, 1));
return_val = vld1q_lane_f32(&tanh_value, return_val, 1);
tanh_value = tanhf(vgetq_lane_f32(x, 2));
return_val = vld1q_lane_f32(&tanh_value, return_val, 2);
tanh_value = tanhf(vgetq_lane_f32(x, 3));
return_val = vld1q_lane_f32(&tanh_value, return_val, 3);
return return_val;
#endif // FAST_TRANSCENDENTALS
}
// Input x is clamped to [-18, 18], even infinity and NaN.
// See tests for error bounds. Using SIGMOID_AS_TANH with
// ACCURATE_TRANSCENDENTAL_APPROX is both faster and more accurate. Using
// SIGMOID_AS_TANH with just FAST is slower, but more accurate.
// SIGMOID_AS_TANH, ACCURATE is 205 Mega/sec
// SIGMOID_AS_TANH, FAST is 290 Mega/sec
// FAST is 340 Mega/sec
inline float32x4_t fast_sigmoid(float32x4_t x) {
#ifdef SIGMOID_AS_TANH
float32x4_t half = vdupq_n_f32(0.5f);
return vmlaq_f32(half, half, fast_tanh(vmulq_f32(half, x)));
#else // SIGMOID_AS_TANH
#if defined FAST_TRANSCENDENTALS && defined ACCURATE_TRANSCENDENTAL_APPROX
x = vminq_f32(x, vdupq_n_f32(kMaxSigmoidInput));
x = vmaxq_f32(x, vdupq_n_f32(kMinSigmoidInput));
// The monomial coefficients of the numerator polynomial (odd).
const float32x4_t alpha_1 = vdupq_n_f32(kSigmoidAlpha1);
const float32x4_t alpha_3 = vdupq_n_f32(kSigmoidAlpha3);
const float32x4_t alpha_5 = vdupq_n_f32(kSigmoidAlpha5);
const float32x4_t alpha_7 = vdupq_n_f32(kSigmoidAlpha7);
const float32x4_t alpha_9 = vdupq_n_f32(kSigmoidAlpha9);
// The monomial coefficients of the denominator polynomial (even).
const float32x4_t beta_0 = vdupq_n_f32(kSigmoidBeta0);
const float32x4_t beta_2 = vdupq_n_f32(kSigmoidBeta2);
const float32x4_t beta_4 = vdupq_n_f32(kSigmoidBeta4);
const float32x4_t beta_6 = vdupq_n_f32(kSigmoidBeta6);
const float32x4_t beta_8 = vdupq_n_f32(kSigmoidBeta8);
const float32x4_t beta_10 = vdupq_n_f32(kSigmoidBeta10);
// Since the polynomials are odd/even, we need x^2.
const float32x4_t x2 = vmulq_f32(x, x);
// Evaluate the numerator polynomial p.
float32x4_t p = vmlaq_f32(alpha_7, x2, alpha_9);
p = vmlaq_f32(alpha_5, x2, p);
p = vmlaq_f32(alpha_3, x2, p);
p = vmlaq_f32(alpha_1, x2, p);
p = vmulq_f32(x, p);
// Evaluate the denominator polynomial p.
float32x4_t q = vmlaq_f32(beta_8, x2, beta_10);
q = vmlaq_f32(beta_6, x2, q);
q = vmlaq_f32(beta_4, x2, q);
q = vmlaq_f32(beta_2, x2, q);
q = vmlaq_f32(beta_0, x2, q);
// Divide the numerator by the denominator.
float32x4_t recp = vrecpeq_f32(q);
recp = vmulq_f32(recp, vrecpsq_f32(recp, q));
return vmlaq_f32(vdupq_n_f32(0.5f), p, recp);
#elif defined FAST_TRANSCENDENTALS
float32x4_t denom = vaddq_f32(fast_exp(vnegq_f32(x)), vdupq_n_f32(1.f));
float32x4_t recp = vrecpeq_f32(denom);
// Newton-Raphson iteration, accuracy is important for audio quality.
recp = vmulq_f32(recp, vrecpsq_f32(recp, denom));
float32x4_t half = vdupq_n_f32(0.5f);
float32x4_t quarter = vdupq_n_f32(0.245f);
float32x4_t linear_approx = vmlaq_f32(half, quarter, x);
uint32x4_t cmp_results = vcaleq_f32(x, vdupq_n_f32(kSigmoidLinearRegion));
return vbslq_f32(cmp_results, linear_approx, recp);
#else
float32x4_t return_val = vdupq_n_f32(0.f);
float result = 1.f / (1.f + expf(-vgetq_lane_f32(x, 0)));
return_val = vld1q_lane_f32(&result, return_val, 0);
result = 1.f / (1.f + expf(-vgetq_lane_f32(x, 1)));
return_val = vld1q_lane_f32(&result, return_val, 1);
result = 1.f / (1.f + expf(-vgetq_lane_f32(x, 2)));
return_val = vld1q_lane_f32(&result, return_val, 2);
result = 1.f / (1.f + expf(-vgetq_lane_f32(x, 3)));
return_val = vld1q_lane_f32(&result, return_val, 3);
return return_val;
#endif // FAST_TRANSCENDENTALS
#endif // SIGMOID_AS_TANH
}
// Scalar implementations, mainly useful for testing.
inline float fast_exp(float x) {
return vgetq_lane_f32(fast_exp(vdupq_n_f32(x)), 0);
}
template <int ExponentBits>
inline float fast_exp(fixed32<ExponentBits> x) {
return vgetq_lane_f32(fast_exp<ExponentBits>(vdupq_n_s32(x.raw_val())), 0);
}
// Returns the exponent of a fixed point number in floating point without ever
// doing any conversions. Less accurate than the version that does conversions,
// but still accurate to within 4% relative for x < 16.
template <int ExponentBits>
inline float fast_exp_fixed(fixed32<ExponentBits> x) {
return vgetq_lane_f32(fast_exp_fixed<ExponentBits>(vdupq_n_s32(x.raw_val())),
0);
}
inline float fast_sigmoid(float x) {
return vgetq_lane_f32(fast_sigmoid(vdupq_n_f32(x)), 0);
}
inline float fast_tanh(float x) {
return vgetq_lane_f32(fast_tanh(vdupq_n_f32(x)), 0);
}
// Clips integer input to [-|kLimit|, |kLimit|].
// Input: register containins 4x fixed32 with mantissa_bits.
// Output: register containing 4x fixed32 limited to
// [-|kLimit| << |mantissa_bits|, |kLimit| << |mantissa_bits|].
template <int kLimit>
inline int32x4_t ClipToBounds(const int mantissa_bits, const int32x4_t x) {
// Clip to the input bounds for this approximation.
int32x4_t clip_limit = vdupq_n_s32(-(kLimit << mantissa_bits));
int32x4_t clipped_x = vmaxq_s32(x, clip_limit);
clip_limit = vnegq_s32(clip_limit);
return vminq_s32(clipped_x, clip_limit);
}
// Fixed32 sigmoid approximation via a quadratic refinement of the exponent
// trick.
// Input: Register containing 4x fixed32 with |mantissa_bits|.
// Output: Register containing 4x float results.
inline float32x4_t fixed32_sigmoid_float(const int mantissa_bits,
const int32x4_t x) {
int32x4_t input = vnegq_s32(x);
float32x4_t y =
vcvtq_f32_s32(ClipToBounds<kMaxSigmoidInputInt>(mantissa_bits, input));
y = fixed32_exp_float_preclipped(mantissa_bits, y);
float32x4_t one = vdupq_n_f32(1.0f);
// Approximate reciprocal is not accurate enough - use full division.
float32x4_t denom = vaddq_f32(y, one);
float32x4_t recp = vrecpeq_f32(denom);
// Newton-Raphson iteration, accuracy is important for audio quality
recp = vmulq_f32(recp, vrecpsq_f32(recp, denom));
return recp;
}
template <int ExponentBits>
inline float32x4_t fast_sigmoid(int32x4_t x) {
#if defined FASTER_TRANSCENDENTALS
// Computation will fail to produce the right result if the input mantissa
// bits exceeds the number in a float.
static_assert(kFloatMantissaBits >= fixed32<ExponentBits>::kMantissaBits,
"Mantissa bits must be at most 23!");
return fixed32_sigmoid_float(fixed32<ExponentBits>::kMantissaBits, x);
#else
return fast_sigmoid(vcvtq_n_f32_s32(x, fixed32<ExponentBits>::kMantissaBits));
#endif // FASTER_TRANSCENDENTALS
}
template <int ExponentBits>
inline float fast_sigmoid(fixed32<ExponentBits> x) {
return vgetq_lane_f32(fast_sigmoid<ExponentBits>(vdupq_n_s32(x.raw_val())),
0);
}
#else // defined __ARM_NEON || defined __aarch64__
inline float fast_exp(float x) {
#ifdef FAST_TRANSCENDENTALS
if (isnan(x)) return 0.0f;
x = std::max(std::min(x, kMaxExpInput), kMinExpInput);
float AConstant, BConstant;
memcpy(&AConstant, &kAConstant, sizeof(int));
memcpy(&BConstant, &kBConstant, sizeof(int));
float y = x * AConstant + BConstant;
int x_int = static_cast<int>(y);
float ret;
memcpy(&ret, &x_int, sizeof(float));
return ret;
#else
return expf(x);
#endif // FAST_TRANSCENDENTALS
}
template <int ExponentBits>
inline float fast_exp(fixed32<ExponentBits> x) {
return fast_exp(static_cast<float>(x));
}
template <int ExponentBits>
inline float fast_exp_fixed(fixed32<ExponentBits> x) {
static_assert(ExponentBits > 8, "Must have more than 8 ExponentBits");
int matched_decimal =
std::max(std::min(x.raw_val(), (80 << (31 - ExponentBits))),
-(80 << (31 - ExponentBits)));
// Convert 1 / log(2) to 16-bit fixed point with 1 exponent bit
// (1 / log(2)) * (1 << 14), but then right shift by the appropriate amount to
// line the decimal point up with the 32-bit float representation.
// (MantissaBits of x) + (MantissaBits of constant) = 23
// 23 - (MantissaBits of x) = MantissaBits of constant
// 23 - (31 - ExponentBits of x) = ...
// (ExponentBits of x - 8) = MantissaBits of constant
const int16_t A = (1.f / logf(2.f)) * (1 << (ExponentBits - 8));
// Same rationale as for floating point versions, bias exponent, subtract
// 366000 to reduce error by centering approximation, instead of being
// one-sided.
const int B = (127 << 23) - 366000;
matched_decimal = A * matched_decimal + B;
float ret_val;
memcpy(&ret_val, &matched_decimal, sizeof(float));
return ret_val;
}
inline float fast_tanh(float x) {
#if defined FAST_TRANSCENDENTALS && defined ACCURATE_TRANSCENDENTAL_APPROX
// Doesn't do anything fancy, just a 13/6-degree rational interpolant which
// is accurate up to a couple of ulp in the range [-9, 9], outside of which
// fl(tanh(x)) = +/-1.
x = std::max(std::min(x, kMaxTanhInput), kMinTanhInput);
// Since the polynomials are odd/even, we need x^2.
float x2 = x * x;
// Evaluate numerator.
float p = kTanhAlpha11 + x2 * kTanhAlpha13;
p = kTanhAlpha9 + x2 * p;
p = kTanhAlpha7 + x2 * p;
p = kTanhAlpha5 + x2 * p;
p = kTanhAlpha3 + x2 * p;
p = kTanhAlpha1 + x2 * p;
p = x * p;
// Evaluate denominator.
float q = kTanhBeta4 + x2 * kTanhBeta6;
q = kTanhBeta2 + x2 * q;
q = kTanhBeta0 + x2 * q;
return p / q;
#elif defined FAST_TRANSCENDENTALS
if (std::abs(x) < kTanhLinearRegion) {
return x;
} else {
x = std::max(std::min(x, kMaxTanhInput), kMinTanhInput);
float positive = fast_exp(x);
float negative = fast_exp(-x);
return (positive - negative) / (positive + negative);
}
#else
return tanhf(x);
#endif // FAST_TRANSCENDENTALS
}
inline float fast_sigmoid(float x) {
#ifdef SIGMOID_AS_TANH
return .5f * fast_tanh(.5f * x) + .5f;
#else
#if defined FAST_TRANSCENDENTALS && defined ACCURATE_TRANSCENDENTAL_APPROX
// Doesn't do anything fancy, just a 9/10-degree rational interpolant which
// interpolates 1/(1+exp(-x)) - 0.5 up to a couple of ulp in the range
// [-18, 18], outside of which the fl(sigmoid(x)) = {0|1}. The shifted
// sigmoid is interpolated because it was easier to make the fit converge.
// See GenericPacketMath.h* in the open source Eigen library.
x = std::max(std::min(x, kMaxSigmoidInput), kMinSigmoidInput);
// Since the polynomials are odd/even, we need x^2.
float x2 = x * x;
// Evaluate numerator.
float p = kSigmoidAlpha7 + x2 * kSigmoidAlpha9;
p = kSigmoidAlpha5 + x2 * p;
p = kSigmoidAlpha3 + x2 * p;
p = kSigmoidAlpha1 + x2 * p;
p = x * p;
// Evaluate denominator.
float q = kSigmoidBeta8 + x2 * kSigmoidBeta10;
q = kSigmoidBeta6 + x2 * q;
q = kSigmoidBeta4 + x2 * q;
q = kSigmoidBeta2 + x2 * q;
q = kSigmoidBeta0 + x2 * q;
return p / q + 0.5f;
#elif defined FAST_TRANSCENDENTALS
if (std::abs(x) < kSigmoidLinearRegion) {
return .245 * x + .5;
} else {
return 1.f / (1.f + fast_exp(-x));
}
#else
return 1.f / (1.f + expf(-x));
#endif // FAST_TRANSCENDENTALS
#endif // SIGMOID_AS_TANH
}
template <int ExponentBits>
inline float fast_sigmoid(fixed32<ExponentBits> x) {
return fast_sigmoid(static_cast<float>(x));
}
#endif // defined __aarch64__
// Number of exponent bits to use for tanh.
static constexpr int kNumTanhExpBits = 3;
// Number of exponent bits to use for sigmoid.
static constexpr int kNumSigmoidExpBits = 4;
// Number of extra bits to shift sigmoid, due to its low gradient.
static constexpr int kNumExtraSigmoidShiftBits = 1;
// Returns (and builds if not done yet) a static data table (that is never
// deleted, as per the style guide) that implements tanh on fixed32 input,
// returning another fixed32 with the given number of mantissa bits (which is
// assumed to be less than the input mantissa bits).
// NOTE that this function is intended to be used only with fixed16 outputs that
// are sign-extended to 32 bits for convenience, and will return a nullptr
// if asked for more than |kMaxMantissaBits| of precision in the output table.
const int* TanhTable(int num_mantissa_bits_out);
// As TanhTable, but for Sigmoid.
const int* SigmoidTable(int num_mantissa_bits_out);
// Scalar/generic function to compute and return the fast approximation to exp
// via a polynomial refinement of the floating point exponent trick.
// TM_ORDER4_16BIT:Max relative error < 5e-6, absolute error < 1e-5 for x < 1.
// TM_ORDER3_16BIT:Max relative error < 1.1e-4, absolute error < 3e-4 for x
// < 1.
template <int kExponentBits, TranscendentalMode kOrder = TM_ORDER4_16BIT>
float fixed32_exp(fixed32<kExponentBits> x) {
constexpr int kMantissaBits = MantissaBitsOf<fixed32<kExponentBits>>::value;
// Clip x to min/max exp input to avoid infinities.
int64_t clipped_x =
std::max(std::min(x.raw_val(), kMaxExpInputInt << kMantissaBits),
-(kMaxExpInputInt << kMantissaBits));
// First convert problem from e^x to 2^x by multiplying by 1/log(2).
// To maximize precision, log_factor is shifted left the maximum amount to
// keep within int32, and we shift x left a further amount such that the
// binary point of the product sits in the correct place in the top 32 bits of
// the result to be used directly as a float. We can't do that directly, as x
// would overflow, so we have to shift by 1 bit less and shift the result by
// 1 bit less to match.
constexpr int kXShift =
kFloatMantissaBits + 31 - kMaxLog2Shift - kMantissaBits;
static_assert(kXShift >= 0,
"Mantissa bits > kFloatMantissaBits + 31 - kMaxLog2Shift");
clipped_x <<= kXShift;
int float_as_int = (kLogFactor * clipped_x >> 31) + kFloatExponentOffset;
// Separate the resulting fixed-point into integer and fractional parts.
int int_part = float_as_int & kFloatExponentMask;
int float_part = float_as_int & kFloatMantissaMask;
float fraction = static_cast<float>(float_part) / (1 << kFloatMantissaBits);
// Compute the mantissa = 2^fraction using:
// fraction - fraction*(1-fraction)*(polynomial of fraction)
// This guarantees exactness at 0 and 1, providing continuity of the error at
// integer boundaries.
float mantissa;
if (kOrder == TM_ORDER4_16BIT || kOrder == TM_ORDER4_FLOAT) {
mantissa = (kExpQuarticFactor2 * fraction + kExpQuarticFactor1) * fraction +
kExpQuarticFactor0;
} else if (kOrder == TM_ORDER3_16BIT) {
mantissa = kExpCubicFactor1 * fraction + kExpCubicFactor0;
}
mantissa = fraction - fraction * (1.0f - fraction) * mantissa;
// Since the function above guarantees to stay within [0, 1), we could do all
// the above in fixed point if necessary, in which case, we can just stuff
// the bottom kFloatMantissaBits in with the exponent and we are done.
// In the floating point world, it is simpler to just multiply them together.
float result;
memcpy(&result, &int_part, sizeof(float));
return result * (1.0f + mantissa);
}
// Computes and returns tanh(x) fixed32->float using a polynomial refinement of
// the floating point exponent trick.
// kOrder=4: Absolute error < 1.8e-6. Relative error < 1.2e-4 for |x| > 0.01.
// kOrder=3: Absolute error < 6e-5. Relative error < 3e-3 for |x| > 0.01
template <int kExponentBits, TranscendentalMode kOrder = TM_ORDER4_16BIT>
float fixed32_tanh(fixed32<kExponentBits> x) {
float float_x = static_cast<float>(x);
if (std::abs(float_x) < 1.0f / 9.0f) {
return float_x * (1 - float_x * float_x / 3.0f);
}
x = static_cast<fixed32<kExponentBits>>(x.raw_val() * 2);
float exp_2x = fixed32_exp<kExponentBits, kOrder>(x);
return (exp_2x - 1.0f) / (exp_2x + 1.0f);
}
// Computes and returns sigmoid(x) fixed32->float using a polynomial refinement
// of the floating point exponent trick.
// TM_ORDER4_16BIT: Absolute error < 9e-7, relative < 4e-6.
// TM_ORDER3_16BIT: Absolute error < 3e-5, relative < 1.1e-4.
template <int kExponentBits, TranscendentalMode kOrder = TM_ORDER4_16BIT>
float fixed32_sigmoid(fixed32<kExponentBits> x) {
x = static_cast<fixed32<kExponentBits>>(-x.raw_val());
float exp_x = fixed32_exp<kExponentBits, kOrder>(x);
return 1.0f / (exp_x + 1.0f);
}
#if defined __AVX2__
// Inline function to access an int32 data table by shifting |x| right by
// |kNumShiftBits|, and adding |kTableOffset| to the result. |x| contains 8
// indices and 8 results are returned. The data table is of size
// |kTableOffset| * 2 + 1.
template <int kNumShiftBits, int kTableOffset>
inline __m256i index_data_table(const int32_t* data_table, const __m256i& x) {
// Shift right with rounding to match input and output precision.
__m256i shifted = _mm256_set1_epi32(1 << (kNumShiftBits - 1));
shifted = _mm256_add_epi32(x, shifted);
shifted = _mm256_srai_epi32(shifted, kNumShiftBits);
// Add the offset.
__m256i addend = _mm256_set1_epi32(kTableOffset);
shifted = _mm256_add_epi32(shifted, addend);
// And clamp to the indices of the LUT.
addend = _mm256_add_epi32(addend, addend);
shifted = _mm256_min_epi32(shifted, addend);
shifted = _mm256_max_epi32(shifted, _mm256_setzero_si256());
// Lookup the results in the table.
return _mm256_i32gather_epi32(data_table, shifted, 4);
}
// Fixed32 to fixed16-in-an-int32 tanh LUT function.
// Input: register containins 8x fixed32 with |NumInputMantissaBits|.
// Output: a register containing 8x fixed16 with |NumOutputMantissaBits|, but
// note that they are sign-extended to 32 bits and are therefore basically the
// same as fixed32 with |NumOutputMantissaBits|.
template <int NumInputMantissaBits, int NumOutputMantissaBits>
inline __m256i fixed32_tanh_fixed16(const int* tanh_table, const __m256i& x) {
// Lose the unnecessary input precision.
constexpr int kNumShiftBits = NumInputMantissaBits - NumOutputMantissaBits;
constexpr int kTableOffset = 1 << (NumOutputMantissaBits + kNumTanhExpBits);
return index_data_table<kNumShiftBits, kTableOffset>(tanh_table, x);
}
// Fixed32 to fixed16-in-an-int32 sigmoid LUT function.
// Input: register containins 8x fixed32 with |NumInputMantissaBits|.
// Output: a register containing 8x fixed16 with |NumOutputMantissaBits|, but
// note that they are sign-extended to 32 bits and are therefore basically the
// same as fixed32 with |NumOutputMantissaBits|.
template <int NumInputMantissaBits, int NumOutputMantissaBits>
inline __m256i fixed32_sigmoid_fixed16(const int* sigmoid_table,
const __m256i& x) {
// Lose the unnecessary input precision.
constexpr int kNumShiftBits =
kNumExtraSigmoidShiftBits + NumInputMantissaBits - NumOutputMantissaBits;
constexpr int kTableOffset = 1
<< (NumOutputMantissaBits + kNumSigmoidExpBits -
kNumExtraSigmoidShiftBits);
return index_data_table<kNumShiftBits, kTableOffset>(sigmoid_table, x);
}
// Convert 2x registers of 8x float32 into 1 register of 16x16 bit fixed int,
// assuming that the floats are already scaled up.
inline __m256i PackFloatsToFixed16(const __m256& x0, const __m256& x1) {
__m256i int0 = _mm256_cvtps_epi32(x0);
__m256i int1 = _mm256_cvtps_epi32(x1);
int0 = _mm256_packs_epi32(int0, int1);
// Swap the middle 64 bit elements so the results are in the right order.
return _mm256_permute4x64_epi64(int0, 0xd8);
}
// Clips integer input to [-|kLimit|, |kLimit|].
// Input: register containins 8x fixed32 with |mantissa_bits|.
// Output: register containing 8x fixed32 limited to
// [-|kLimit| << |mantissa_bits|, |kLimit| << |mantissa_bits|].
template <int kLimit>
inline __m256i ClipToBounds(const int mantissa_bits, const __m256i& x) {
// Clip to the input bounds for this approximation.
__m256i clip_limit = _mm256_set1_epi32(-(kLimit << mantissa_bits));
__m256i clipped_x = _mm256_max_epi32(x, clip_limit);
// This quickly negates the limit without having to load another constant.
clip_limit = _mm256_sign_epi32(clip_limit, clip_limit);
return _mm256_min_epi32(clipped_x, clip_limit);
}
// Clips float input to [-|kLimit|, |kLimit|].
// Input: register containins 8x float.
// Output: register containing 8x float limited to [-|kLimit|, |kLimit|].
inline __m256 ClipToFloatBounds(const float kLimit, const __m256& x) {
__m256 clip_limit = _mm256_set1_ps(kLimit);
__m256 clipped_x = _mm256_min_ps(x, clip_limit);
clip_limit = _mm256_set1_ps(-kLimit);
return _mm256_max_ps(clipped_x, clip_limit);
}
// Float to float power of 2 approximation, using a quartic refinement of
// the exponent trick. For TM_ORDER4_16BIT and TM_ORDER3_16BIT, implementation
// is entirely in integer, using 16x16=16 multiplication, using AVX2, which
// enables 16 elements to be computed in parallel, hence the double register
// input/output args.
// The price paid for this speed is an increase in error over the (scalar) int32
// example implementations above by a variable factor of 4-10.
// For the TM_ORDER4_FLOAT case, the computation is all done in float, solving
// this lower precision problem.
// NOTE: The input must have already been clipped to prevent overflow, which
// sets the practical limit to +/-126 << kFloatMantissaBits.
// NOTE: The input is a scaled float, as if converted raw from int, and the
// scale factor is fixed at kFloatMantissaBits!
// Input: 2x register containining 8x float * 1 << kFloatMantissaBits.
// Output: 2x register containing 8x float.
// TM_ORDER4_FLOAT: Max relative error < 8e-6, absolute error < 9e-6 for x < 1.
// TM_ORDER4_16BIT: Max relative error < 3e-5, absolute error < 6e-5 for x < 1.
// TM_ORDER3_16BIT: Max relative error < 6e-4, absolute error < 2e-3 for x < 1.
template <TranscendentalMode kOrder = TM_ORDER4_16BIT>
inline void float32_pow2(__m256& x0, __m256& x1) {
// Convert straight to int.
__m256i exp_int_x0 = _mm256_cvtps_epi32(x0);
__m256i exp_int_x1 = _mm256_cvtps_epi32(x1);
__m256i result_x0, result_x1;
static_assert(kOrder == TM_ORDER4_FLOAT || kOrder == TM_ORDER4_16BIT ||
kOrder == TM_ORDER3_16BIT,
"Invalid order.");
if (kOrder == TM_ORDER4_FLOAT) {
__m256i mantissa_mask = _mm256_set1_epi32(0x7fffff);
__m256 float_factor =
_mm256_set1_ps(1.0f / static_cast<float>(1 << kFloatMantissaBits));
__m256i fract0 = _mm256_and_si256(mantissa_mask, exp_int_x0);
__m256i fract1 = _mm256_and_si256(mantissa_mask, exp_int_x1);
__m256 float0 = _mm256_mul_ps(_mm256_cvtepi32_ps(fract0), float_factor);
__m256 float1 = _mm256_mul_ps(_mm256_cvtepi32_ps(fract1), float_factor);
// Compute the polynomial of the fractional part.
// Ordering these lines carefully makes it faster, as some of the multiply
// operations can pipeline instead of waiting for the previous result.
__m256 x_squared0 = _mm256_mul_ps(float0, float0);
__m256 x_squared1 = _mm256_mul_ps(float1, float1);
__m256 b = _mm256_set1_ps(kExpQuarticFactor1);
__m256 b_x0 = _mm256_mul_ps(b, float0);
__m256 b_x1 = _mm256_mul_ps(b, float1);
__m256 a = _mm256_set1_ps(kExpQuarticFactor2);
__m256 a_x_squared0 = _mm256_mul_ps(a, x_squared0);
__m256 a_x_squared1 = _mm256_mul_ps(a, x_squared1);
__m256 x_squared_minus_x0 = _mm256_sub_ps(x_squared0, float0);
__m256 x_squared_minus_x1 = _mm256_sub_ps(x_squared1, float1);
__m256 c = _mm256_set1_ps(kExpQuarticFactor0);
b_x0 = _mm256_add_ps(b_x0, c);
b_x1 = _mm256_add_ps(b_x1, c);
float_factor = _mm256_set1_ps(static_cast<float>(1 << kFloatMantissaBits));
a_x_squared0 = _mm256_add_ps(a_x_squared0, b_x0);
a_x_squared1 = _mm256_add_ps(a_x_squared1, b_x1);
a_x_squared0 = _mm256_mul_ps(a_x_squared0, x_squared_minus_x0);
a_x_squared1 = _mm256_mul_ps(a_x_squared1, x_squared_minus_x1);
result_x0 = _mm256_cvtps_epi32(_mm256_mul_ps(a_x_squared0, float_factor));
result_x1 = _mm256_cvtps_epi32(_mm256_mul_ps(a_x_squared1, float_factor));
} else {
// Combine the fractional part of both inputs into a single register.
// The representation is fixed16<0>, ie 15 mantissa bits.
__m256i mantissa_mask = _mm256_set1_epi32(0x7fff00);
__m256i x_01 =
_mm256_srli_epi32(_mm256_and_si256(mantissa_mask, exp_int_x0), 8);
x_01 = _mm256_or_si256(
x_01,
_mm256_slli_epi32(_mm256_and_si256(mantissa_mask, exp_int_x1), 8));
// Compute the polynomial of the fractional part.
// Ordering these lines carefully makes it faster, as some of the multiply
// operations can pipeline instead of waiting for the previous result.
__m256i x_squared = _mm256_mulhrs_epi16(x_01, x_01);
__m256i result, x_squared_minus_x;
if (kOrder == TM_ORDER4_16BIT) {
__m256i b = _mm256_set1_epi16(FloatAsInt16(kExpQuarticFactor1));
__m256i b_x = _mm256_mulhrs_epi16(b, x_01);
__m256i a = _mm256_set1_epi16(FloatAsInt16(kExpQuarticFactor2));
__m256i a_x_squared = _mm256_mulhrs_epi16(a, x_squared);
x_squared_minus_x = _mm256_sub_epi16(x_squared, x_01);
// LOG(INFO) << "x_squared_minus_x=" <<
// static_cast<int16>(_mm256_extract_epi16(x_squared_minus_x, 0)) /
// 32768.0f;
__m256i c = _mm256_set1_epi16(FloatAsInt16(kExpQuarticFactor0));
b_x = _mm256_add_epi16(b_x, c);
// LOG(INFO) << "bx+c=" << static_cast<int16>(_mm256_extract_epi16(b_x,
// 0)) / 32768.0f;
result = _mm256_add_epi16(a_x_squared, b_x);
} else { // kOrder = TM_ORDER3_16BIT
__m256i a = _mm256_set1_epi16(FloatAsInt16(kExpCubicFactor1));
__m256i b = _mm256_set1_epi16(FloatAsInt16(kExpQuarticFactor0));
__m256i a_x = _mm256_mulhrs_epi16(a, x_01);
x_squared_minus_x = _mm256_sub_epi16(x_squared, x_01);
result = _mm256_add_epi16(a_x, b);
}
result = _mm256_mulhrs_epi16(result, x_squared_minus_x);
// Extract 16x16-bit results back to the separate sets of 8x32.
result_x0 = _mm256_slli_epi32(result, 16);
result_x0 = _mm256_srai_epi32(result_x0, 8);
result_x1 = _mm256_srai_epi32(result, 16);
result_x1 = _mm256_slli_epi32(result_x1, 8);
}
// Add the constant to normalize the exponent.
__m256i exp_offset = _mm256_set1_epi32(kFloatExponentOffset);
exp_int_x0 = _mm256_add_epi32(exp_int_x0, exp_offset);
exp_int_x0 = _mm256_add_epi32(exp_int_x0, result_x0);
exp_int_x1 = _mm256_add_epi32(exp_int_x1, exp_offset);
exp_int_x1 = _mm256_add_epi32(exp_int_x1, result_x1);
// Cast back to float, as we just computed the exponent and mantissa and
// assembled them in IEEE format.
x0 = _mm256_castsi256_ps(exp_int_x0);
x1 = _mm256_castsi256_ps(exp_int_x1);
}
// Fixed32 to to float exp approximation, using a quartic/cubic refinement of
// the exponent trick. Implementation is entirely in integer, using 16x16=16
// multiplication, using AVX2, which enables 16 elements to be computed in
// parallel, hence the double register input/output args.
// The price paid for this speed is an increase in error over the (scalar) int32
// example implementations above by a variable factor of 4-10.
// The TM_ORDER4_FLOAT version uses floats and improves the precision.
// Input: 2x registers containins 8x fixed32 with kMantissaBits.
// Output: 2x registers containing 8x float32.
// TM_ORDER4_FLOAT: Max relative error < 8e-6, absolute error < 9e-6 for x < 1.
// TM_ORDER4_16BIT: Max relative error < 3e-5, absolute error < 6e-5 for x < 1.
// TM_ORDER3_16BIT: Max relative error < 6e-4, absolute error < 2e-3 for x < 1.
template <int kInputMantissaBits, TranscendentalMode kOrder = TM_ORDER4_16BIT>
inline void float_exp_float_preclipped(__m256& y0, __m256& y1) {
// Divide by log 2 to convert problem to 2^x, and scale to match the
// mantissa bits required by IEEE floats. Without a _mm256_mulhrs_epi32, it is
// much easier to do this in float, even with the double conversion, as 16 bit
// is not precise enough here.
// This is the shift of the FP mantissa relative to the input mantissa.
constexpr int kXShift = kFloatMantissaBits - kInputMantissaBits;
constexpr float kLogFactor = static_cast<float>(1 << kXShift);
__m256 factor = _mm256_set1_ps(kLogFactor * kOneOverLog2);
y0 = _mm256_mul_ps(y0, factor);
y1 = _mm256_mul_ps(y1, factor);
// Now compute 2^x.
float32_pow2<kOrder>(y0, y1);
}
template <int kInputMantissaBits, TranscendentalMode kOrder = TM_ORDER4_16BIT>
inline void fixed32_exp_float(const __m256i& x0, const __m256i& x1, __m256& y0,
__m256& y1) {
// Clip to acceptable bounds to prevent overflow, and convert to float.
y0 =
_mm256_cvtepi32_ps(ClipToBounds<kMaxExpInputInt>(kInputMantissaBits, x0));
y1 =
_mm256_cvtepi32_ps(ClipToBounds<kMaxExpInputInt>(kInputMantissaBits, x1));
float_exp_float_preclipped<kInputMantissaBits, kOrder>(y0, y1);
}
// Float->float tanh approximation via the exponent trick.
// Note that the input is scaled floats, as if converted raw from fixed16/32.
// Input: 2x registers containing 8x float scaled by input_mantissa_bits.
// Output: two registers containing 8x float.
// TM_ORDER4_FLOAT: Max relative error < 2.1e-5, absolute error < 2.3e-6.
// TM_ORDER4_16BIT: Max relative error < 1e-4, absolute error < 1.3e-5.
// TM_ORDER3_16BIT: Max relative error < 2.1e-3, absolute error < 3e-4.
template <int kInputMantissaBits, TranscendentalMode kOrder = TM_ORDER4_FLOAT>
inline void float_tanh_float(const __m256& x0, const __m256& x1, __m256& y0,
__m256& y1) {
// Divide by log 2 to convert problem to 2^x, double (as we need exp(2x)) and
// scale to the mantissa bits required by float32_pow2 all in one multiply.
// This is the shift of the FP mantissa relative to the input mantissa.
// Add one to double the input.
const float kLogFactor =
static_cast<float>(1 << (kFloatMantissaBits - kInputMantissaBits + 1));
__m256 factor = _mm256_set1_ps(kLogFactor * kOneOverLog2);
// Clip to suitable input bounds for tanh.
__m256 clip_limit = _mm256_set1_ps(kMaxTanhInput * (1 << kInputMantissaBits));
__m256 clip0 = _mm256_min_ps(x0, clip_limit);
__m256 clip1 = _mm256_min_ps(x1, clip_limit);
clip_limit = _mm256_set1_ps(-kMaxTanhInput * (1 << kInputMantissaBits));
clip0 = _mm256_max_ps(clip0, clip_limit);
clip1 = _mm256_max_ps(clip1, clip_limit);
__m256 exp0 = _mm256_mul_ps(clip0, factor);
__m256 exp1 = _mm256_mul_ps(clip1, factor);
// Now compute 2^x.
float32_pow2<kOrder>(exp0, exp1);
// Now compute tanh using (e^2x - 1) / (e^2x + 1).
__m256 one = _mm256_set1_ps(1.0f);
__m256 numerator = _mm256_sub_ps(exp0, one);
__m256 denominator = _mm256_add_ps(exp0, one);
// Approximate reciprocal is not accurate enough - use full division.
exp0 = _mm256_div_ps(numerator, denominator);
numerator = _mm256_sub_ps(exp1, one);
denominator = _mm256_add_ps(exp1, one);
exp1 = _mm256_div_ps(numerator, denominator);
// Compute 3rd-order Taylor tanh ~ x - x^3/3 for high accuracy and thus low
// relative error close to 0.
// Normalize the inputs back to proper floats.
factor = _mm256_set1_ps(1.0f / (1 << kInputMantissaBits));
clip0 = _mm256_mul_ps(clip0, factor);
clip1 = _mm256_mul_ps(clip1, factor);
__m256 third = _mm256_set1_ps(-1.0f / 3.0f);
__m256 taylor0 = _mm256_mul_ps(clip0, clip0);
__m256 taylor1 = _mm256_mul_ps(clip1, clip1);
taylor0 = _mm256_mul_ps(taylor0, clip0);
taylor1 = _mm256_mul_ps(taylor1, clip1);
// TODO(b/191497441): The next two pairs of instructions could be combined to
// _mm256_fmadd_ps, but requires -mfma compilation option, eg:
// taylor0 = _mm256_fmadd_ps(taylor0, third, clip0);
taylor0 = _mm256_mul_ps(taylor0, third);
taylor1 = _mm256_mul_ps(taylor1, third);
taylor0 = _mm256_add_ps(clip0, taylor0);
taylor1 = _mm256_add_ps(clip1, taylor1);
// Test |x| <= 1/9, roughly where the errors cross over, without needing yet
// another constant.
third = _mm256_mul_ps(third, third);
__m256 neg_zero = _mm256_set1_ps(-0.0f);
clip0 = _mm256_andnot_ps(neg_zero, clip0);
clip1 = _mm256_andnot_ps(neg_zero, clip1);
__m256 cmp_results0 = _mm256_cmp_ps(clip0, third, _CMP_LE_OQ);
__m256 cmp_results1 = _mm256_cmp_ps(clip1, third, _CMP_LE_OQ);
y0 = _mm256_blendv_ps(exp0, taylor0, cmp_results0);
y1 = _mm256_blendv_ps(exp1, taylor1, cmp_results1);
}
// Fixed32 sigmoid approximation via the AVX2 implementation of the exponent
// trick.
// Input: 2x registers containins 8x float containing converted fixed32 scaled
// with kInputMantissaBits.
// Output: 2x registers containing 8x float.
// TM_ORDER4_FLOAT: Max relative error < 4e-6, absolute error < 1e-6.
// TM_ORDER4_16BIT: Max relative error < 3e-5, absolute error < 7e-6.
// TM_ORDER3_16BIT: Max relative error < 5.4e-4, absolute error < 1.4e-4.
template <int kInputMantissaBits, TranscendentalMode kOrder = TM_ORDER4_FLOAT>
inline void float_sigmoid_float(__m256& y0, __m256& y1) {
constexpr float kInputFactor = static_cast<float>(1 << kInputMantissaBits);
// Negate the inputs.
__m256 minus_zero = _mm256_set1_ps(-0.0f);
y0 = _mm256_xor_ps(y0, minus_zero);
y1 = _mm256_xor_ps(y1, minus_zero);
y0 = ClipToFloatBounds(kMaxSigmoidInput * kInputFactor, y0);
y1 = ClipToFloatBounds(kMaxSigmoidInput * kInputFactor, y1);
float_exp_float_preclipped<kInputMantissaBits, kOrder>(y0, y1);
__m256 one = _mm256_set1_ps(1.0f);
// Approximate reciprocal is not accurate enough - use full division.
y0 = _mm256_div_ps(one, _mm256_add_ps(y0, one));
y1 = _mm256_div_ps(one, _mm256_add_ps(y1, one));
}
#endif // defined __AVX2__
} // namespace csrblocksparse
#endif // LYRA_CODEC_SPARSE_MATMUL_NUMERICS_FAST_TRANSCENDENTALS_H_
|