Spaces:
Runtime error
Runtime error
File size: 26,458 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined __aarch64__
#include <arm_neon.h>
#endif
#if defined __AVX__ || defined __AVX2__
#include <immintrin.h>
#endif
#include <stdio.h>
#include <array>
#include <random>
#include <tuple>
#include <vector>
#include "gtest/gtest.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"
#include "sparse_matmul/numerics/test_utils.h"
namespace csrblocksparse {
const float kExpFixedRelTolerance = .084f;
#ifdef SIGMOID_AS_TANH
#if defined FAST_TRANSCENDENTALS && defined ACCURATE_TRANSCENDENTAL_APPROX
const float kSigmoidRelTolerance = .093f; // 9.3% relative
const float kSigmoidAbsTolerance = .0005f;
const float kSigmoidFixedRelTolerance = .093f;
const float kSigmoidFixedAbsTolerance = .0005f;
#elif defined FAST_TRANSCENDENTALS
const float kSigmoidRelTolerance = .09f; // 9.0% relative
const float kSigmoidAbsTolerance = .003f;
const float kSigmoidFixedRelTolerance = .09f;
const float kSigmoidFixedAbsTolerance = .003f;
#endif
#elif defined FAST_TRANSCENDENTALS and defined ACCURATE_TRANSCENDENTAL_APPROX
const float kSigmoidRelTolerance = .102f; // 10.2% relative
const float kSigmoidAbsTolerance = .0003f;
const float kSigmoidFixedRelTolerance = .102f;
const float kSigmoidFixedAbsTolerance = .0003f;
#elif defined FAST_TRANSCENDENTALS
const float kSigmoidRelTolerance = .09f; // 9.0% relative
const float kSigmoidAbsTolerance = .006f;
const float kSigmoidFixedRelTolerance = .09f;
const float kSigmoidFixedAbsTolerance = .006f;
#else
const float kSigmoidRelTolerance = .0001f;
const float kSigmoidAbsTolerance = 1e-5f;
const float kSigmoidFixedRelTolerance = .001f;
const float kSigmoidFixedAbsTolerance = .001f;
#endif
#if (defined FAST_TRANSCENDENTALS && defined ACCURATE_TRANSCENDENTAL_APPROX || \
defined FASTER_TRANSCENDENTALS)
const float kExpRelTolerance = .03f; // 3% relative
const float kTanhRelTolerance = .006f; // .6% relative
const float kTanhAbsTolerance = .0003f;
#elif defined FAST_TRANSCENDENTALS
const float kExpRelTolerance = .03f; // 3% relative
const float kTanhRelTolerance = .091f; // .91% relative
const float kTanhAbsTolerance = .00525f;
#else
const float kExpRelTolerance = .0001f;
const float kTanhRelTolerance = .0001f;
const float kTanhAbsTolerance = 1e-5f;
#endif
constexpr float kQuarticFloatExpRelTolerance = 8e-6f;
constexpr float kQuarticFloatExpTolerance = 9e-6f;
constexpr float kQuarticExpRelTolerance = 3e-5f;
constexpr float kQuarticExpTolerance = 6e-5f;
constexpr float kCubicExpRelTolerance = 6e-4f;
constexpr float kCubicExpTolerance = 2e-3f;
constexpr float kQuarticFloatTanhRelTolerance = 3e-5f;
constexpr float kQuarticFloatTanhTolerance = 3e-6f;
constexpr float kCubicTanhRelTolerance = 3e-3f;
constexpr float kCubicTanhTolerance = 3e-4f;
constexpr float kQuarticSigmoidRelTolerance = 3e-5f;
constexpr float kQuarticSigmoidTolerance = 7e-6f;
constexpr float kCubicSigmoidRelTolerance = 6e-4f;
constexpr float kCubicSigmoidTolerance = 2e-4f;
#ifdef __AVX2__
constexpr float kQuarticTanhRelTolerance = 1e-4f;
constexpr float kQuarticTanhTolerance = 2e-5f;
constexpr float kQuarticFloatSigmoidRelTolerance = 4e-6f;
constexpr float kQuarticFloatSigmoidTolerance = 1e-6f;
#endif // __AVX2__
TEST(Transcendentals, Exp) {
// 132 - 127 = 5, we check between -63.99... and 63.99...
const int maxExponent = 132;
const int minExponent = 0;
float max_error = 0.f;
constexpr int kExponentBits = 7;
for (int s = 0; s < 2; ++s) {
for (int e = minExponent; e < maxExponent; ++e) {
// Don't check every mantissa for speed reasons.
for (int m = 0; m < (1 << 23); m += (1 << 10)) {
uint32_t int_val = s << 31 | e << 23 | m;
float x;
memcpy(&x, &int_val, sizeof(float));
float exact_exp = expf(x);
float approx_exp = csrblocksparse::fast_exp(x);
float approx_exp_fixed = csrblocksparse::fast_exp<kExponentBits>(
csrblocksparse::fixed32<kExponentBits>(x));
float rel_diff = RelDiff(exact_exp, approx_exp);
float rel_diff_fixed = RelDiff(exact_exp, approx_exp_fixed);
max_error = std::max(max_error, rel_diff);
EXPECT_LT(rel_diff, kExpRelTolerance)
<< exact_exp << " " << approx_exp << " " << x;
EXPECT_LT(rel_diff_fixed, kExpRelTolerance)
<< exact_exp << " " << approx_exp << " " << x;
}
}
}
}
TEST(Transcendentals, FixedExp) {
const int maxExponent = 132;
const int minExponent = 120;
float max_error = 0.f;
float max_abs_error = 0.f;
for (int s = 0; s < 2; ++s) {
for (int e = minExponent; e < maxExponent; ++e) {
// Don't check every mantissa for speed reasons.
for (int m = 0; m < (1 << 23); m += (1 << 10)) {
uint32_t int_val = s << 31 | e << 23 | m;
float x;
memcpy(&x, &int_val, sizeof(float));
float exact_exp = expf(x);
float approx_exp =
csrblocksparse::fast_exp_fixed(csrblocksparse::fixed32<16>(x));
float rel_diff = RelDiff(exact_exp, approx_exp);
float abs_diff = std::abs(exact_exp - approx_exp);
max_error = std::max(max_error, rel_diff);
max_abs_error = std::max(max_abs_error, abs_diff);
EXPECT_LT(rel_diff, kExpFixedRelTolerance)
<< exact_exp << " " << approx_exp << " " << x;
}
}
}
LOG(INFO) << "Max relative exp error = " << max_error
<< ", abs=" << max_abs_error;
}
template <TranscendentalMode kOrder>
void TestExp(float abs_tolerance, float rel_tolerance) {
constexpr int kMaxInput = 80 << 16;
constexpr int kMinInput = -(80 << 16);
constexpr int kExponentBits = 15;
float max_error = 0.f;
float max_abs_error = 0.f;
for (int i = kMinInput; i <= kMaxInput; ++i) {
csrblocksparse::fixed32<kExponentBits> fixed_int(i);
float x = static_cast<float>(fixed_int);
float exact_exp = expf(x);
float approx_exp = fixed32_exp<kExponentBits, kOrder>(fixed_int);
float diff = exact_exp - approx_exp;
float abs_diff = std::abs(diff);
float rel_diff = RelDiff(exact_exp, approx_exp);
max_error = std::max(max_error, rel_diff);
if (x <= 1.0f) {
ASSERT_LT(abs_diff, abs_tolerance)
<< "x=" << x << ", target=" << exact_exp << ", aprx=" << approx_exp;
max_abs_error = std::max(max_abs_error, abs_diff);
}
ASSERT_LT(rel_diff, rel_tolerance)
<< "x=" << x << ", target=" << exact_exp << ", aprx=" << approx_exp;
}
LOG(INFO) << "Max relative error = " << max_error
<< ", abs=" << max_abs_error;
}
TEST(Transcendentals, QuarticExp) {
TestExp<TM_ORDER4_16BIT>(kQuarticFloatExpTolerance,
kQuarticFloatExpRelTolerance);
}
TEST(Transcendentals, CubicExp) {
TestExp<TM_ORDER3_16BIT>(kCubicExpTolerance, kCubicExpRelTolerance);
}
template <TranscendentalMode kOrder>
void TestTanh(float abs_tolerance, float rel_tolerance) {
constexpr int kMaxInput = (40 << 16);
constexpr int kMinInput = -(40 << 16);
constexpr int kExponentBits = 15;
float max_error = 0.f;
float max_abs_error = 0.f;
for (int i = kMinInput; i <= kMaxInput; ++i) {
csrblocksparse::fixed32<kExponentBits> fixed_int(i);
float x = static_cast<float>(fixed_int);
float exact_tanh = tanh(x);
float approx_tanh = fixed32_tanh<kExponentBits, kOrder>(fixed_int);
float diff = exact_tanh - approx_tanh;
float abs_diff = std::abs(diff);
float rel_diff = RelDiff(exact_tanh, approx_tanh);
ASSERT_LT(abs_diff, abs_tolerance)
<< "x=" << x << ", target=" << exact_tanh << ", aprx=" << approx_tanh;
max_abs_error = std::max(max_abs_error, abs_diff);
max_error = std::max(max_error, rel_diff);
ASSERT_LT(rel_diff, rel_tolerance)
<< "x=" << x << ", target=" << exact_tanh << ", aprx=" << approx_tanh;
}
LOG(INFO) << "Max relative error = " << max_error
<< ", abs=" << max_abs_error;
}
TEST(Transcendentals, QuarticTanh) {
TestTanh<TM_ORDER4_16BIT>(kQuarticFloatTanhTolerance,
kQuarticFloatTanhRelTolerance);
}
TEST(Transcendentals, CubicTanh) {
TestTanh<TM_ORDER3_16BIT>(kCubicTanhTolerance, kCubicTanhRelTolerance);
}
template <TranscendentalMode kOrder>
void TestSigmoid(float abs_tolerance, float rel_tolerance) {
constexpr int kMaxInput = 80 << 16;
constexpr int kMinInput = -(80 << 16);
constexpr int kExponentBits = 15;
float max_error = 0.f;
float max_abs_error = 0.f;
for (int i = kMinInput; i <= kMaxInput; ++i) {
csrblocksparse::fixed32<kExponentBits> fixed_int(i);
float x = static_cast<float>(fixed_int);
float exact_sigmoid = 1.0f / (1.0f + exp(-x));
float approx_sigmoid = fixed32_sigmoid<kExponentBits, kOrder>(fixed_int);
float diff = exact_sigmoid - approx_sigmoid;
float abs_diff = std::abs(diff);
float rel_diff = RelDiff(exact_sigmoid, approx_sigmoid);
max_error = std::max(max_error, rel_diff);
ASSERT_LT(abs_diff, abs_tolerance)
<< "x=" << x << ", target=" << exact_sigmoid
<< ", aprx=" << approx_sigmoid;
max_abs_error = std::max(max_abs_error, abs_diff);
ASSERT_LT(rel_diff, rel_tolerance)
<< "x=" << x << ", target=" << exact_sigmoid
<< ", aprx=" << approx_sigmoid;
}
LOG(INFO) << "Max relative sigmoid error = " << max_error
<< ", abs=" << max_abs_error;
}
TEST(Transcendentals, QuarticSigmoidExp) {
TestSigmoid<TM_ORDER4_16BIT>(kQuarticSigmoidTolerance,
kQuarticSigmoidRelTolerance);
}
TEST(Transcendentals, CubicSigmoidExp) {
TestSigmoid<TM_ORDER3_16BIT>(kCubicSigmoidTolerance,
kCubicSigmoidRelTolerance);
}
TEST(Transcendentals, Sigmoid) {
// 132 - 127 = 5, we check between -63.99... and 63.99...
const int maxExponent = 132;
const int minExponent = 0;
// The mantissa bits must not exceed 23, so min exponent bits here is:
// 31 - 23 = 8.
constexpr int kExponentBits = 9;
float max_error = 0.f;
float max_abs_error = 0.f;
#if defined __aarch64__
float max_vector_error = 0.f;
float max_vector_abs_error = 0.f;
#endif
for (int s = 0; s < 2; ++s) {
for (int e = minExponent; e < maxExponent; ++e) {
// Don't check every mantissa for speed reasons.
for (int m = 0; m < (1 << 23); m += (1 << 10)) {
uint32_t int_val = s << 31 | e << 23 | m;
float x;
memcpy(&x, &int_val, sizeof(float));
float exact_sigmoid = 1. / (1. + expf(-x));
float approx_sigmoid = csrblocksparse::fast_sigmoid(x);
float approx_sigmoid_fixed =
csrblocksparse::fast_sigmoid<kExponentBits>(
csrblocksparse::fixed32<kExponentBits>(x));
float rel_diff = RelDiff(exact_sigmoid, approx_sigmoid);
float abs_diff = std::abs(exact_sigmoid - approx_sigmoid);
float rel_diff_fixed = RelDiff(exact_sigmoid, approx_sigmoid_fixed);
max_error = std::max(max_error, rel_diff);
max_abs_error = std::max(max_abs_error, abs_diff);
EXPECT_LT(rel_diff, kSigmoidRelTolerance)
<< exact_sigmoid << " " << approx_sigmoid << " " << x;
EXPECT_NEAR(approx_sigmoid, exact_sigmoid, kSigmoidAbsTolerance) << x;
EXPECT_LT(rel_diff_fixed, kSigmoidFixedRelTolerance)
<< exact_sigmoid << " " << approx_sigmoid_fixed << " " << x;
EXPECT_NEAR(approx_sigmoid_fixed, exact_sigmoid,
kSigmoidFixedAbsTolerance)
<< x;
#if defined __aarch64__
constexpr int kSIMD_WIDTH = 4;
float approx_results[kSIMD_WIDTH];
int32x4_t input =
vdupq_n_s32(csrblocksparse::fixed32<kExponentBits>(x).raw_val());
float32x4_t result = csrblocksparse::fast_sigmoid<kExponentBits>(input);
vst1q_f32(approx_results, result);
for (int i = 0; i < kSIMD_WIDTH; ++i) {
float rel_diff = RelDiff(exact_sigmoid, approx_results[i]);
float abs_diff = std::abs(exact_sigmoid - approx_results[i]);
max_vector_error = std::max(max_vector_error, rel_diff);
max_vector_abs_error = std::max(max_vector_abs_error, abs_diff);
EXPECT_LT(rel_diff, kSigmoidRelTolerance)
<< exact_sigmoid << " " << approx_sigmoid << " " << x;
EXPECT_NEAR(approx_sigmoid, exact_sigmoid, kSigmoidAbsTolerance) << x;
}
#endif
}
}
}
LOG(INFO) << "Max relative error in float sigmoid=" << max_error;
LOG(INFO) << "Max abs error in float sigmoid=" << max_abs_error;
#if defined __aarch64__
LOG(INFO) << "Max relative vector error fixed sigmoid=" << max_vector_error;
LOG(INFO) << "Max abs vector error fixed sigmoid=" << max_vector_abs_error;
#endif
}
TEST(Transcendentals, Tanh) {
// 132 - 127 = 5, we check between -63.99... and 63.99...
const int maxExponent = 132;
const int minExponent = 0;
float max_error = 0.f;
float max_abs_error = 0.f;
for (int s = 0; s < 2; ++s) {
for (int e = minExponent; e < maxExponent; ++e) {
// Don't check every mantissa for speed reasons.
for (int m = 0; m < (1 << 23); m += (1 << 10)) {
uint32_t int_val = s << 31 | e << 23 | m;
float x;
memcpy(&x, &int_val, sizeof(float));
float exact_tanh = tanhf(x);
float approx_tanh = csrblocksparse::fast_tanh(x);
float rel_diff = RelDiff(exact_tanh, approx_tanh);
float abs_diff = std::abs(exact_tanh - approx_tanh);
max_error = std::max(rel_diff, max_error);
max_abs_error = std::max(abs_diff, max_abs_error);
EXPECT_LT(rel_diff, kTanhRelTolerance)
<< exact_tanh << " " << approx_tanh << " " << x;
EXPECT_NEAR(approx_tanh, exact_tanh, kTanhAbsTolerance) << x;
}
}
}
LOG(INFO) << "Max relative error in float tanh=" << max_error;
LOG(INFO) << "Max abs error in float tanh=" << max_abs_error;
// tanh behavior is not identical across all lanes, so need to test
// with some values in the linear region and some not.
#if defined __aarch64__
float vals[4] = {-1.f, -.1f, .1f, 1.f};
float exact_results[4];
float approx_results[4];
max_error = 0.f;
max_abs_error = 0.f;
float32x4_t input = vld1q_f32(vals);
float32x4_t result = csrblocksparse::fast_tanh(input);
vst1q_f32(approx_results, result);
for (int i = 0; i < 4; ++i) {
exact_results[i] = tanh(vals[i]);
float rel_diff = RelDiff(exact_results[i], approx_results[i]);
float abs_diff = std::abs(exact_results[i] - approx_results[i]);
max_error = std::max(rel_diff, max_error);
max_abs_error = std::max(abs_diff, max_abs_error);
EXPECT_LT(rel_diff, kTanhRelTolerance)
<< exact_results[i] << " " << approx_results[i] << " " << vals[i];
EXPECT_NEAR(approx_results[i], exact_results[i], kTanhAbsTolerance)
<< vals[i];
}
LOG(INFO) << "Max relative vector error in float tanh=" << max_error;
LOG(INFO) << "Max abs vector error in float tanh=" << max_abs_error;
#endif
}
#if defined __AVX2__
constexpr int kSIMDSize = 8;
constexpr int kNumExpBitsIn = 10;
constexpr int kNumExpBitsOut = 5;
TEST(Transcendentals, TanhLut) {
// Test every value in (-1, 1) for round-trip exactness.
constexpr int kNumMantissaBitsIn = fixed32<kNumExpBitsIn>::kMantissaBits;
constexpr int kNumMantissaBitsOut = fixed16<kNumExpBitsOut>::kMantissaBits;
const int32_t* tanh_table = TanhTable(kNumMantissaBitsOut);
float in_factor = static_cast<float>(1 << kNumMantissaBitsIn);
float out_factor = static_cast<float>(1 << kNumMantissaBitsOut);
for (int i = 1 - (1 << kNumMantissaBitsOut);
i + kSIMDSize < (1 << kNumMantissaBitsOut); i += kSIMDSize) {
int32_t inputs[kSIMDSize];
int32_t outputs[kSIMDSize];
int32_t target_outputs[kSIMDSize];
for (int j = 0; j < kSIMDSize; ++j) {
float target_tanh = (i + j) / out_factor;
float x = atanhf(static_cast<float>(target_tanh));
inputs[j] = static_cast<int>(x * in_factor);
target_outputs[j] = i + j;
}
__m256i x_in = _mm256_loadu_si256(reinterpret_cast<__m256i*>(inputs));
__m256i output =
fixed32_tanh_fixed16<kNumMantissaBitsIn, kNumMantissaBitsOut>(
tanh_table, x_in);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(outputs), output);
for (int j = 0; j < kSIMDSize; ++j) {
EXPECT_EQ(target_outputs[j], outputs[j]);
}
}
}
TEST(Transcendentals, SigmoidLut) {
// Test every value in (-1, 1) for round-trip exactness.
constexpr int kNumMantissaBitsIn = fixed32<kNumExpBitsIn>::kMantissaBits;
constexpr int kNumMantissaBitsOut = fixed16<kNumExpBitsOut>::kMantissaBits;
const int32_t* sigmoid_table = SigmoidTable(kNumMantissaBitsOut);
float in_factor = static_cast<float>(1 << kNumMantissaBitsIn);
float out_factor = static_cast<float>(1 << kNumMantissaBitsOut);
for (int i = 1; i + kSIMDSize < (1 << kNumMantissaBitsOut); i += kSIMDSize) {
int32_t inputs[kSIMDSize];
int32_t outputs[kSIMDSize];
int32_t target_outputs[kSIMDSize];
for (int j = 0; j < kSIMDSize; ++j) {
float target_sigmoid = (i + j) / out_factor;
float x = 2.0f * atanhf(2.0f * static_cast<float>(target_sigmoid) - 1.0f);
inputs[j] = static_cast<int>(x * in_factor);
target_outputs[j] = i + j;
}
__m256i x_in = _mm256_loadu_si256(reinterpret_cast<__m256i*>(inputs));
__m256i output =
fixed32_sigmoid_fixed16<kNumMantissaBitsIn, kNumMantissaBitsOut>(
sigmoid_table, x_in);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(outputs), output);
for (int j = 0; j < kSIMDSize; ++j) {
EXPECT_EQ(target_outputs[j], outputs[j]);
}
}
}
template <TranscendentalMode kOrder>
static void TestExpAVX2(float abs_tolerance, float rel_tolerance) {
constexpr int kMantissaBits = 20;
// Test every value in [-80, 80] and report the max error.
constexpr int kMinInput = -(80 << kMantissaBits);
constexpr int kMaxInput = 80 << kMantissaBits;
constexpr int kNumInputs = kMaxInput - kMinInput;
std::vector<int32> inputs(kNumInputs);
std::vector<float> outputs(kNumInputs);
std::vector<float> target_outputs(kNumInputs);
for (int i = 0; i < inputs.size(); ++i) {
csrblocksparse::fixed32<31 - kMantissaBits> fixed_int(i + kMinInput);
float x = static_cast<float>(fixed_int);
inputs[i] = fixed_int.raw_val();
target_outputs[i] = expf(x);
}
absl::Time t_start = absl::Now();
for (int i = 0; i + kSIMDSize * 2 <= kNumInputs; i += kSIMDSize * 2) {
__m256i x0 =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(inputs.data() + i));
__m256i x1 = _mm256_loadu_si256(
reinterpret_cast<const __m256i*>(inputs.data() + i + kSIMDSize));
__m256 y0, y1;
fixed32_exp_float<kMantissaBits, kOrder>(x0, x1, y0, y1);
_mm256_storeu_ps(outputs.data() + i, y0);
_mm256_storeu_ps(outputs.data() + i + kSIMDSize, y1);
}
LOG(INFO) << "Time=" << absl::ToDoubleMilliseconds(absl::Now() - t_start);
float max_error = 0.f;
float max_abs_error = 0.f;
for (int i = 0; i < kNumInputs; ++i) {
float diff = target_outputs[i] - outputs[i];
float abs_diff = std::abs(diff);
csrblocksparse::fixed32<31 - kMantissaBits> fixed_int(i + kMinInput);
float x = static_cast<float>(fixed_int);
float rel_diff = RelDiff(target_outputs[i], outputs[i]);
max_error = std::max(max_error, rel_diff);
if (x <= 1.0f) {
ASSERT_LT(abs_diff, abs_tolerance)
<< "x=" << x << ", target=" << target_outputs[i]
<< ", result= " << outputs[i] << ", i=" << i;
max_abs_error = std::max(max_abs_error, abs_diff);
}
ASSERT_LT(rel_diff, rel_tolerance)
<< "x=" << x << ", target=" << target_outputs[i]
<< ", result= " << outputs[i] << ", i=" << i;
}
LOG(INFO) << "Max relative error = " << max_error
<< ", abs=" << max_abs_error;
}
TEST(Transcendentals, QuarticFloatExpAVX2) {
TestExpAVX2<TM_ORDER4_FLOAT>(kQuarticFloatExpTolerance,
kQuarticFloatExpRelTolerance);
}
TEST(Transcendentals, QuarticExpAVX2) {
TestExpAVX2<TM_ORDER4_16BIT>(kQuarticExpTolerance, kQuarticExpRelTolerance);
}
TEST(Transcendentals, CubicExpAVX2) {
TestExpAVX2<TM_ORDER3_16BIT>(kCubicExpTolerance, kCubicExpRelTolerance);
}
template <TranscendentalMode kOrder>
void TestTanhAVX2Float(float abs_tolerance, float rel_tolerance) {
constexpr int kMantissaBits = 16;
// Test every value in [-10, 10] and report the max error.
constexpr int kMinInput = -(10 << kMantissaBits);
constexpr int kMaxInput = 10 << kMantissaBits;
constexpr int kNumInputs = kMaxInput - kMinInput;
float max_error = 0.f;
float max_abs_error = 0.f;
std::vector<float> inputs(kNumInputs);
std::vector<float> outputs(kNumInputs);
std::vector<float> target_outputs(kNumInputs);
for (int i = 0; i < inputs.size(); ++i) {
csrblocksparse::fixed32<31 - kMantissaBits> fixed_int(i + kMinInput);
float x = static_cast<float>(fixed_int);
float exact = tanh(x);
inputs[i] = static_cast<float>(fixed_int.raw_val());
target_outputs[i] = exact;
}
absl::Time t_start = absl::Now();
for (int i = 0; i + kSIMDSize * 2 <= inputs.size(); i += kSIMDSize * 2) {
__m256 x0 = _mm256_loadu_ps(inputs.data() + i);
__m256 x1 = _mm256_loadu_ps(inputs.data() + kSIMDSize + i);
__m256 y0, y1;
float_tanh_float<kMantissaBits, kOrder>(x0, x1, y0, y1);
_mm256_storeu_ps(outputs.data() + i, y0);
_mm256_storeu_ps(outputs.data() + i + kSIMDSize, y1);
}
LOG(INFO) << "Time=" << absl::ToDoubleMilliseconds(absl::Now() - t_start);
float worst_abs_x = 0.0f, worst_rel_x = 0.0f;
for (int i = 0; i < inputs.size(); ++i) {
float diff = target_outputs[i] - outputs[i];
float abs_diff = std::abs(diff);
csrblocksparse::fixed32<31 - kMantissaBits> fixed_int(i + kMinInput);
float x = static_cast<float>(fixed_int);
ASSERT_LT(abs_diff, abs_tolerance)
<< "x=" << x << ", target=" << target_outputs[i]
<< ", aprx=" << outputs[i];
if (abs_diff > max_abs_error) worst_abs_x = x;
max_abs_error = std::max(max_abs_error, abs_diff);
float rel_diff = 0.0f;
rel_diff = RelDiff(target_outputs[i], outputs[i]);
if (rel_diff > max_error) worst_rel_x = x;
max_error = std::max(max_error, rel_diff);
ASSERT_LT(rel_diff, rel_tolerance)
<< "x=" << x << ", target=" << target_outputs[i]
<< ", aprx=" << outputs[i];
}
LOG(INFO) << "Max relative error = " << max_error
<< ", abs=" << max_abs_error;
LOG(INFO) << "Worst rel x = " << worst_rel_x << ", abs=" << worst_abs_x;
}
TEST(Transcendentals, QuarticTanhFloatAVX2Float) {
TestTanhAVX2Float<TM_ORDER4_FLOAT>(kQuarticFloatTanhTolerance,
kQuarticFloatTanhRelTolerance);
}
TEST(Transcendentals, QuarticTanhAVX2Float) {
TestTanhAVX2Float<TM_ORDER4_16BIT>(kQuarticTanhTolerance,
kQuarticTanhRelTolerance);
}
TEST(Transcendentals, CubicTanhAVX2Float) {
TestTanhAVX2Float<TM_ORDER3_16BIT>(kCubicTanhTolerance,
kCubicTanhRelTolerance);
}
template <TranscendentalMode kOrder>
void TestSigmoidAVX2Float(float abs_tolerance, float rel_tolerance) {
constexpr int kMantissaBits = 20;
// Test every value in [-20, 20] and report the max error.
constexpr int kMaxInput = 20 << kMantissaBits;
constexpr int kMinInput = -(20 << kMantissaBits);
float max_error = 0.f;
float max_abs_error = 0.f;
std::vector<int32> inputs(kMaxInput - kMinInput);
std::vector<float> outputs(kMaxInput - kMinInput);
std::vector<float> target_outputs(kMaxInput - kMinInput);
for (int i = 0; i < inputs.size(); ++i) {
csrblocksparse::fixed32<31 - kMantissaBits> fixed_int(i + kMinInput);
float x = static_cast<float>(fixed_int);
float exact = 1.0f / (1.0f + expf(-x));
inputs[i] = fixed_int.raw_val();
target_outputs[i] = exact;
}
absl::Time t_start = absl::Now();
for (int i = 0; i + kSIMDSize * 2 <= inputs.size(); i += kSIMDSize * 2) {
__m256i x0 =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(inputs.data() + i));
__m256i x1 = _mm256_loadu_si256(
reinterpret_cast<const __m256i*>(inputs.data() + i + kSIMDSize));
__m256 y0 = _mm256_cvtepi32_ps(x0);
__m256 y1 = _mm256_cvtepi32_ps(x1);
float_sigmoid_float<kMantissaBits, kOrder>(y0, y1);
_mm256_storeu_ps(outputs.data() + i, y0);
_mm256_storeu_ps(outputs.data() + i + kSIMDSize, y1);
}
LOG(INFO) << "Time=" << absl::ToDoubleMilliseconds(absl::Now() - t_start);
for (int i = 0; i < inputs.size(); ++i) {
float diff = target_outputs[i] - outputs[i];
float abs_diff = std::abs(diff);
csrblocksparse::fixed32<31 - kMantissaBits> fixed_int(i + kMinInput);
float x = static_cast<float>(fixed_int);
float rel_diff = RelDiff(target_outputs[i], outputs[i]);
max_error = std::max(max_error, rel_diff);
ASSERT_LT(abs_diff, abs_tolerance)
<< "x=" << x << ", target=" << target_outputs[i]
<< ", aprx=" << outputs[i];
max_abs_error = std::max(max_abs_error, abs_diff);
ASSERT_LT(rel_diff, rel_tolerance)
<< "x=" << x << ", target=" << target_outputs[i]
<< ", aprx=" << outputs[i];
}
LOG(INFO) << "Max relative error = " << max_error
<< ", abs=" << max_abs_error;
}
TEST(Transcendentals, QuarticSigmoidFloatAVX2Float) {
TestSigmoidAVX2Float<TM_ORDER4_FLOAT>(kQuarticFloatSigmoidTolerance,
kQuarticFloatSigmoidRelTolerance);
}
TEST(Transcendentals, QuarticSigmoidAVX2Float) {
TestSigmoidAVX2Float<TM_ORDER4_16BIT>(kQuarticSigmoidTolerance,
kQuarticSigmoidRelTolerance);
}
TEST(Transcendentals, CubicSigmoidAVX2Float) {
TestSigmoidAVX2Float<TM_ORDER3_16BIT>(kCubicSigmoidTolerance,
kCubicSigmoidRelTolerance);
}
#endif // __AVX2__
} // namespace csrblocksparse
|