File size: 11,940 Bytes
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
 * Copyright 2021 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_ARM_H_
#define LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_ARM_H_

#if defined __ARM_NEON || defined __aarch64__
#include <arm_neon.h>
#endif
#include <cstdint>

#include "sparse_matmul/compute/ar_inputs.h"
#include "sparse_matmul/numerics/fast_transcendentals.h"

namespace csrblocksparse {

static constexpr int kNeonSIMDWidth = 4;

// ------ Scalar calculation --------
// See "Efficient Neural Audio Synthesis" for a description of the calculation.
// https://arxiv.org/abs/1802.08435
//
// NOTE:
// |sample| = (|coarse_at_sminus1|, |fine_at_sminus1|,
//             |coarse_at_sminus1|, |fine_at_sminus1|)
// |w_sample| = (|coarse_at_s|, |coarse_at_s|, |coarse_at_s|, |coarse_at_s|)
//
// CHEATSHEET:
// vld1q_f32 = load 4 32-bit floats
// vmulq_f32(a, b) : return a * b;
// vaddq_f32(a, b) : return a + b;
// vmlaq_f32(c, a, b) : return c + a * b;
// vpaddq_f32(a, b) : return (a0 + a1, a2 + a3, b0 + b1, b2 + b3)
// vsubq_f32(a, b) : return a - b;
// vst1q_f32 = store 4 32-bit floats
#if defined __ARM_NEON || defined __aarch64__

#if !defined __aarch64__
// Backport of vpaddq_f32 to ARM32.
inline float32x4_t vpaddq_f32(float32x4_t a, float32x4_t b) {
  float32x2_t a10 = vget_low_f32(a);
  float32x2_t a32 = vget_high_f32(a);
  float32x2_t b10 = vget_low_f32(b);
  float32x2_t b32 = vget_high_f32(b);
  return vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32));
}
#endif

template <ARInputsMode kInputsMode, bool SplitGates>
void GoThroughGatesFloat(int start, int end, const float* qr_ptr,
                         const float* gru_gates_ptr,
                         const float* gru_gates_other_ptr,
                         const float* conditioning_ptr, float* gru_h_ptr,
                         const float* w_hat, int proj_size,
                         const float* coarse_at_sminus1,
                         const float* fine_at_sminus1,
                         const float* coarse_at_s) {
  // Increment all the pointers to save on pointer arithmetic in the loop.
  conditioning_ptr += start;
  gru_h_ptr += start;
  gru_gates_ptr += start;
  if (SplitGates) {
    DCHECK_NE(gru_gates_other_ptr, nullptr);
    gru_gates_other_ptr += start;
  }
  if (kInputsMode != ARInputsMode::k0ARInputs) {
    DCHECK_NE(qr_ptr, nullptr);
    qr_ptr += 2 * start;
    DCHECK_NE(coarse_at_sminus1, nullptr);
    DCHECK_NE(fine_at_sminus1, nullptr);
    if (kInputsMode == ARInputsMode::k3ARInputs) {
      DCHECK_NE(w_hat, nullptr);
      DCHECK_NE(coarse_at_s, nullptr);
      w_hat += start;
    }
  }
  for (int i = start; i < end; i += kNeonSIMDWidth) {
    float32x4_t reset = vld1q_f32(gru_gates_ptr);
    float32x4_t update = vld1q_f32(gru_gates_ptr + proj_size);
    float32x4_t cell = vld1q_f32(gru_gates_ptr + 2 * proj_size);
    float32x4_t qr_cell;
    if (SplitGates) {
      reset = vaddq_f32(reset, vld1q_f32(gru_gates_other_ptr));
      update = vaddq_f32(update, vld1q_f32(gru_gates_other_ptr + proj_size));
      cell = vaddq_f32(cell, vld1q_f32(gru_gates_other_ptr + 2 * proj_size));
    }
    if (kInputsMode != ARInputsMode::k0ARInputs) {
      // Setup the sample vector.
      float32x4_t sample = vdupq_n_f32(*coarse_at_sminus1);
      sample = vsetq_lane_f32(*fine_at_sminus1, sample, 1);
      sample = vsetq_lane_f32(*fine_at_sminus1, sample, 3);

      // All auto types are float32x4_t, auto used to fit statements on one line
      // for readability. Do two rows of QR at once.
      auto qr_reset_0 = vmulq_f32(vld1q_f32(qr_ptr), sample);
      auto qr_reset_1 = vmulq_f32(vld1q_f32(qr_ptr + 4), sample);
      auto qr_reset = vpaddq_f32(qr_reset_0, qr_reset_1);

      auto qr_update_0 = vmulq_f32(vld1q_f32(qr_ptr + 2 * proj_size), sample);
      auto qr_update_1 =
          vmulq_f32(vld1q_f32(qr_ptr + 4 + 2 * proj_size), sample);
      auto qr_update = vpaddq_f32(qr_update_0, qr_update_1);

      auto qr_cell_0 = vmulq_f32(vld1q_f32(qr_ptr + 4 * proj_size), sample);
      auto qr_cell_1 = vmulq_f32(vld1q_f32(qr_ptr + 4 + 4 * proj_size), sample);
      qr_cell = vpaddq_f32(qr_cell_0, qr_cell_1);

      if (kInputsMode == ARInputsMode::k3ARInputs) {
        float32x4_t w_sample = vdupq_n_f32(*coarse_at_s);
        qr_reset = vmlaq_f32(qr_reset, vld1q_f32(w_hat), w_sample);
        qr_update =
            vmlaq_f32(qr_update, vld1q_f32(w_hat + proj_size), w_sample);
        qr_cell =
            vmlaq_f32(qr_cell, vld1q_f32(w_hat + 2 * proj_size), w_sample);
      }
      reset = vaddq_f32(reset, qr_reset);
      update = vaddq_f32(update, qr_update);
    }
    auto reset_conditioning = vld1q_f32(conditioning_ptr);
    auto update_conditioning = vld1q_f32(conditioning_ptr + proj_size);
    auto cell_conditioning = vld1q_f32(conditioning_ptr + 2 * proj_size);

    reset = fast_sigmoid(vaddq_f32(reset, reset_conditioning));
    update = fast_sigmoid(vaddq_f32(update, update_conditioning));
    if (kInputsMode == ARInputsMode::k0ARInputs) {
      cell = vmulq_f32(reset, cell);
    } else {
      cell = vmlaq_f32(qr_cell, reset, cell);
    }
    auto hbar = fast_tanh(vaddq_f32(cell, cell_conditioning));

    auto prev_h = vld1q_f32(gru_h_ptr);
    auto diff = vsubq_f32(prev_h, hbar);
    auto new_h = vmlaq_f32(hbar, diff, update);

    vst1q_f32(gru_h_ptr, new_h);
    // Increment all the pointers.
    conditioning_ptr += kNeonSIMDWidth;
    gru_h_ptr += kNeonSIMDWidth;
    gru_gates_ptr += kNeonSIMDWidth;
    if (SplitGates) gru_gates_other_ptr += kNeonSIMDWidth;
    if (kInputsMode != ARInputsMode::k0ARInputs) {
      qr_ptr += 2 * kNeonSIMDWidth;
      if (kInputsMode == ARInputsMode::k3ARInputs) w_hat += kNeonSIMDWidth;
    }
  }
}

// This version should only be used if all of the 32-bit fixed point
// representations have the same number of mantissa bits.
// |ar_at_sminus1| packs sample 0 and 1 into a pair because the QR weights are
// formatted with the weights interleaved for sample 0 and 1. The two samples
// represent coarse and fine for WaveRNN.
template <typename GRUStateType, typename GRUMatMulOutType,
          ARInputsMode kInputsMode, bool SplitGates>
void GoThroughGatesFixed(int start, int end, const float* qr_ptr,
                         const int32_t* gru_gates_ptr,
                         const int32_t* gru_gates_other_ptr,
                         const int32_t* conditioning_ptr, int16_t* gru_h_ptr,
                         const float* w_hat, int proj_size,
                         const std::pair<float, float>* ar_at_sminus1,
                         const float* coarse_at_s) {
  // Increment all the pointers to save on pointer arithmetic in the loop.
  conditioning_ptr += start;
  gru_h_ptr += start;
  gru_gates_ptr += start;
  if (SplitGates) {
    DCHECK_NE(gru_gates_other_ptr, nullptr);
    gru_gates_other_ptr += start;
  }
  float32x4_t sample01;
  float32x4_t w_sample;
  if (kInputsMode != ARInputsMode::k0ARInputs) {
    DCHECK_NE(qr_ptr, nullptr);
    qr_ptr += 2 * start;
    DCHECK_NE(ar_at_sminus1, nullptr);
    sample01 = vdupq_n_f32(ar_at_sminus1->first);
    sample01 = vsetq_lane_f32(ar_at_sminus1->second, sample01, 1);
    sample01 = vsetq_lane_f32(ar_at_sminus1->second, sample01, 3);
    if (kInputsMode == ARInputsMode::k3ARInputs) {
      DCHECK_NE(w_hat, nullptr);
      DCHECK_NE(coarse_at_s, nullptr);
      w_hat += start;
      w_sample = vdupq_n_f32(*coarse_at_s);
    }
  }
  for (int i = start; i < end; i += kNeonSIMDWidth) {
    auto reset = vld1q_s32(gru_gates_ptr);
    auto update = vld1q_s32(gru_gates_ptr + proj_size);
    // vcvtq_n_f32_s32 = convert 32-bit fixed point to fp32
    auto cell_int = vld1q_s32(gru_gates_ptr + 2 * proj_size);
    if (SplitGates) {
      reset = vaddq_s32(reset, vld1q_s32(gru_gates_other_ptr));
      update = vaddq_s32(update, vld1q_s32(gru_gates_other_ptr + proj_size));
      cell_int =
          vaddq_s32(cell_int, vld1q_s32(gru_gates_other_ptr + 2 * proj_size));
    }
    float32x4_t cell =
        vcvtq_n_f32_s32(cell_int, GRUMatMulOutType::kMantissaBits);
    float32x4_t qr_cell;
    if (kInputsMode != ARInputsMode::k0ARInputs) {
      // Do two rows of QR at once.
      float32x4_t qr_reset_0 = vmulq_f32(vld1q_f32(qr_ptr), sample01);
      float32x4_t qr_reset_1 = vmulq_f32(vld1q_f32(qr_ptr + 4), sample01);
      float32x4_t qr_reset = vpaddq_f32(qr_reset_0, qr_reset_1);

      float32x4_t qr_update_0 =
          vmulq_f32(vld1q_f32(qr_ptr + 2 * proj_size), sample01);
      float32x4_t qr_update_1 =
          vmulq_f32(vld1q_f32(qr_ptr + 4 + 2 * proj_size), sample01);
      float32x4_t qr_update = vpaddq_f32(qr_update_0, qr_update_1);

      float32x4_t qr_cell_0 =
          vmulq_f32(vld1q_f32(qr_ptr + 4 * proj_size), sample01);
      float32x4_t qr_cell_1 =
          vmulq_f32(vld1q_f32(qr_ptr + 4 + 4 * proj_size), sample01);
      qr_cell = vpaddq_f32(qr_cell_0, qr_cell_1);
      if (kInputsMode == ARInputsMode::k3ARInputs) {
        float32x4_t w_sample = vdupq_n_f32(*coarse_at_s);
        qr_reset = vmlaq_f32(qr_reset, vld1q_f32(w_hat), w_sample);
        qr_update =
            vmlaq_f32(qr_update, vld1q_f32(w_hat + proj_size), w_sample);
        qr_cell =
            vmlaq_f32(qr_cell, vld1q_f32(w_hat + 2 * proj_size), w_sample);
      }
      reset = vaddq_s32(
          reset, vcvtq_n_s32_f32(qr_reset, GRUMatMulOutType::kMantissaBits));
      update = vaddq_s32(
          update, vcvtq_n_s32_f32(qr_update, GRUMatMulOutType::kMantissaBits));
    }

    auto reset_conditioning = vld1q_s32(conditioning_ptr);
    auto update_conditioning = vld1q_s32(conditioning_ptr + proj_size);
    float32x4_t cell_conditioning =
        vcvtq_n_f32_s32(vld1q_s32(conditioning_ptr + 2 * proj_size),
                        GRUMatMulOutType::kMantissaBits);

    float32x4_t reset_f32 = fast_sigmoid<GRUMatMulOutType::kExponentBits>(
        vaddq_s32(reset, reset_conditioning));
    float32x4_t update_f32 = fast_sigmoid<GRUMatMulOutType::kExponentBits>(
        vaddq_s32(update, update_conditioning));
    if (kInputsMode == ARInputsMode::k0ARInputs) {
      cell = vmulq_f32(reset_f32, cell);
    } else {
      cell = vmlaq_f32(qr_cell, reset_f32, cell);
    }
    float32x4_t hbar = fast_tanh(vaddq_f32(cell, cell_conditioning));

    float32x4_t prev_h = vcvtq_n_f32_s32(vmovl_s16(vld1_s16(gru_h_ptr)),
                                         GRUStateType::kMantissaBits);
    float32x4_t diff = vsubq_f32(prev_h, hbar);
    float32x4_t new_h = vmlaq_f32(hbar, diff, update_f32);

    // vcvtq_n_s32_f32 = convert fp32 to signed 32-bit fixed point
    // vqrshrn_n_s32 = saturating, rounding, narrowing right shift - used to
    // convert a 32-bit fixed point value to a 16-bit fixed point value
    vst1_s16(gru_h_ptr,
             vqrshrn_n_s32(
                 vcvtq_n_s32_f32(new_h, GRUStateType::kMantissaBits + 16), 16));
    // Increment all the pointers.
    conditioning_ptr += kNeonSIMDWidth;
    gru_h_ptr += kNeonSIMDWidth;
    gru_gates_ptr += kNeonSIMDWidth;
    if (SplitGates) gru_gates_other_ptr += kNeonSIMDWidth;
    if (kInputsMode != ARInputsMode::k0ARInputs) {
      qr_ptr += 2 * kNeonSIMDWidth;
      if (kInputsMode == ARInputsMode::k3ARInputs) w_hat += kNeonSIMDWidth;
    }
  }
}
#endif  // defined __ARM_NEON || defined __aarch64__

}  // namespace csrblocksparse

#endif  // LYRA_CODEC_SPARSE_MATMUL_COMPUTE_GRU_GATES_ARM_H_