Spaces:
Runtime error
Runtime error
File size: 28,625 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_COMPUTE_KERNELS_AVX_H_
#define LYRA_CODEC_SPARSE_MATMUL_COMPUTE_KERNELS_AVX_H_
#if defined __AVX__
#include <immintrin.h>
#include <algorithm>
#include <type_traits>
// TODO(b/188702959): Remove fast_transcendentals with GRU refactor.
#include "sparse_matmul/numerics/fast_transcendentals.h"
#include "sparse_matmul/numerics/fixed_types.h"
#include "sparse_matmul/numerics/float16_types.h"
#include "sparse_matmul/numerics/type_utils.h"
namespace csrblocksparse {
namespace detail {
template <typename WeightType, typename RhsType, typename OutType>
struct IsAllowableFloatTypes
: std::integral_constant<bool, std::is_same<WeightType, float>::value &&
std::is_same<RhsType, float>::value &&
std::is_same<OutType, float>::value> {};
#if defined __AVX2__
// 16-bit inputs, 32-bit output exponent matches sum of input exponents
// OR
// 16-bit inputs, 16-bit output - will shift to match exponent
template <typename WeightType, typename RhsType, typename OutType>
struct IsAllowableFixedTypes
: std::integral_constant<bool, (IsFixed16Type<WeightType>::value &&
IsFixed16Type<RhsType>::value) &&
(IsFixed32Type<OutType>::value ||
IsFixed16Type<OutType>::value)> {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericKernel
: std::integral_constant<
bool,
!IsAllowableFloatTypes<WeightType, RhsType, OutType>::value &&
!IsAllowableFixedTypes<WeightType, RhsType, OutType>::value> {};
template <typename Type>
struct IsAddableFixedTypes
: std::integral_constant<bool, IsFixed32Type<Type>::value ||
IsFixed16Type<Type>::value> {};
template <typename Type>
struct ShouldEnableGenericAdd
: std::integral_constant<bool, !IsAddableFixedTypes<Type>::value> {};
#else // No AVX2.
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericKernel
: std::integral_constant<
bool, !IsAllowableFloatTypes<WeightType, RhsType, OutType>::value> {};
template <typename Type>
struct ShouldEnableGenericAdd : std::true_type {};
#endif // __AVX2__
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMV_4x4
: ShouldEnableGenericKernel<WeightType, RhsType, OutType> {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMM5_4x4
: ShouldEnableGenericKernel<WeightType, RhsType, OutType> {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMV_1x1 : std::true_type {};
template <typename WeightType, typename RhsType, typename OutType>
struct ShouldEnableGenericSpMM5_1x1 : std::true_type {};
// The computational routines do NO error checking for speed. It is assumed
// that this has been handled by CSRBlockSparseMatrix.
// In-line function to extract results from a pair of registers and store in
// memory. Note that the non-const references are registers, and are modified
// by this function!
inline void Extract4Results(bool relu, __m256& sum1, __m256& sum2,
float** out_ptr) {
// Horizontally add the results. We have 2 registers, |sum1| and |sum2| that
// each contain 2 sets of 4 values that need to be added.
sum1 = _mm256_hadd_ps(sum1, sum2);
sum1 = _mm256_hadd_ps(sum1, sum1);
// Now |sum1| contains [|res0|, |res2|, |res0|, |res2|, |res1|, |res3|,
// |res1|, |res3|]
if (relu) {
sum1 = _mm256_max_ps(sum1, _mm256_setzero_ps());
}
// It is really hard in AVX to cross the 128 bit 'lanes' and this is the
// *only* way to do it.
// Get the top half of |sum1| in to bottom of |sum2|.
sum2 = _mm256_permute2f128_ps(sum1, sum1, 1);
// Interleave the values between the two registers.
sum1 = _mm256_unpacklo_ps(sum1, sum2);
// Save the lower 128 bits (4 floats).
__m128 result = _mm256_extractf128_ps(sum1, 0);
_mm_store_ps(*out_ptr, result);
*out_ptr += 4;
}
// Performs the calculation y = A * x + b where A is a sparse matrix with a 4x4
// blocked pattern, x is a vector and b is vector. Weights are stored for this
// routine by making each 4x4 block contiguous. Blocks are ordered in standard
// row-major format. column indices are converted to deltas and then multiplied
// by 2 to convert to bytes, so that the value can be used directly to offset
// the pointer into the rhs vector.
//
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function. This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<std::is_same<WeightType, float>::value &&
std::is_same<RhsType, float>::value &&
std::is_same<OutType, float>::value>::type
SpMV_4x4(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
const int32_t* nnz_per_row, const RhsType* rhs_ptr,
const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
OutType* out_ptr, int64_t assigned_rows,
int64_t rows /* only used in SpMM variants */,
int64_t cols /* only used in SpMM variants */, int relu) {
for (int reduced_row = 0; reduced_row < assigned_rows; ++reduced_row) {
// Broadcast the biases by 4 to undo the division by 4 in the input biases.
__m256 sum1 = _mm256_set_m128(_mm_broadcast_ss(bias_ptr + 1),
_mm_broadcast_ss(bias_ptr));
bias_ptr += 2;
__m256 sum2 = _mm256_set_m128(_mm_broadcast_ss(bias_ptr + 1),
_mm_broadcast_ss(bias_ptr));
bias_ptr += 2;
int reduced_col_count = *nnz_per_row++;
for (int c = 0; c < reduced_col_count; ++c) {
int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
rhs_ptr += col_delta;
// Multiply this 4x4 block.
__m256 rhs =
_mm256_broadcast_ps(reinterpret_cast<const __m128*>(rhs_ptr));
__m256 weights1 = _mm256_load_ps(weights_ptr);
weights_ptr += 8;
sum1 = _mm256_add_ps(sum1, _mm256_mul_ps(weights1, rhs));
__m256 weights2 = _mm256_load_ps(weights_ptr);
weights_ptr += 8;
sum2 = _mm256_add_ps(sum2, _mm256_mul_ps(weights2, rhs));
}
Extract4Results(relu, sum1, sum2, &out_ptr);
}
}
// Performs the calculation y = A * x + b where A is a sparse matrix with a 4x4
// blocked pattern, x is a fat vector with 5 columns and b is vector. b is
// broadcast. Weights are stored for this routine by making each 4x4 block
// contiguous. Blocks are ordered in standard row-major format. column indices
// are converted to deltas and then multiplied by 2 to convert to bytes, so
// that the value can be used directly to offset the pointer into the rhs
// vector.
//
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function. This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<std::is_same<WeightType, float>::value &&
std::is_same<RhsType, float>::value &&
std::is_same<OutType, float>::value>::type
SpMM5_4x4(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
const int32_t* nnz_per_row, const RhsType* rhs_ptr,
const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
OutType* out_ptr, int64_t assigned_rows, int64_t rows, int64_t cols,
int relu) {
const RhsType* rhs_ptrs[5];
for (int i = 0; i < 5; ++i) rhs_ptrs[i] = rhs_ptr + i * cols;
OutType* out_ptrs[5];
for (int i = 0; i < 5; ++i) out_ptrs[i] = out_ptr + i * rows;
for (int reduced_row = 0; reduced_row < assigned_rows; ++reduced_row) {
// We will acumulate the results in 10 registers, |sum1_0| to |sum2_4|.
// Broadcast the biases by 4 to undo the division by 4 in the input biases.
__m256 sum1_0 = _mm256_set_m128(_mm_broadcast_ss(bias_ptr + 1),
_mm_broadcast_ss(bias_ptr));
bias_ptr += 2;
__m256 sum2_0 = _mm256_set_m128(_mm_broadcast_ss(bias_ptr + 1),
_mm_broadcast_ss(bias_ptr));
bias_ptr += 2;
__m256 sum1_1 = sum1_0;
__m256 sum2_1 = sum2_0;
__m256 sum1_2 = sum1_0;
__m256 sum2_2 = sum2_0;
__m256 sum1_3 = sum1_0;
__m256 sum2_3 = sum2_0;
__m256 sum1_4 = sum1_0;
__m256 sum2_4 = sum2_0;
int reduced_col_count = *nnz_per_row++;
for (int c = 0; c < reduced_col_count; ++c) {
int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
for (int k = 0; k < 5; ++k) rhs_ptrs[k] += col_delta;
// Multiply this 4x4 block.
__m256 rhs =
_mm256_broadcast_ps(reinterpret_cast<const __m128*>(rhs_ptrs[0]));
__m256 weights1 = _mm256_load_ps(weights_ptr);
weights_ptr += 8;
sum1_0 = _mm256_add_ps(sum1_0, _mm256_mul_ps(weights1, rhs));
__m256 weights2 = _mm256_load_ps(weights_ptr);
weights_ptr += 8;
sum2_0 = _mm256_add_ps(sum2_0, _mm256_mul_ps(weights2, rhs));
rhs = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(rhs_ptrs[1]));
sum1_1 = _mm256_add_ps(sum1_1, _mm256_mul_ps(weights1, rhs));
sum2_1 = _mm256_add_ps(sum2_1, _mm256_mul_ps(weights2, rhs));
rhs = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(rhs_ptrs[2]));
sum1_2 = _mm256_add_ps(sum1_2, _mm256_mul_ps(weights1, rhs));
sum2_2 = _mm256_add_ps(sum2_2, _mm256_mul_ps(weights2, rhs));
rhs = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(rhs_ptrs[3]));
sum1_3 = _mm256_add_ps(sum1_3, _mm256_mul_ps(weights1, rhs));
sum2_3 = _mm256_add_ps(sum2_3, _mm256_mul_ps(weights2, rhs));
rhs = _mm256_broadcast_ps(reinterpret_cast<const __m128*>(rhs_ptrs[4]));
sum1_4 = _mm256_add_ps(sum1_4, _mm256_mul_ps(weights1, rhs));
sum2_4 = _mm256_add_ps(sum2_4, _mm256_mul_ps(weights2, rhs));
}
Extract4Results(relu, sum1_0, sum2_0, &out_ptrs[0]);
Extract4Results(relu, sum1_1, sum2_1, &out_ptrs[1]);
Extract4Results(relu, sum1_2, sum2_2, &out_ptrs[2]);
Extract4Results(relu, sum1_3, sum2_3, &out_ptrs[3]);
Extract4Results(relu, sum1_4, sum2_4, &out_ptrs[4]);
}
}
#ifdef __AVX2__
// In-line function to finish the computation of the result as 4x int32 in
// |sum|.
inline void Compute4Results(bool relu, int kShiftAmount, __m256i& sum) {
// Horizontally add the results. We have 1 register that contains results
// [0 0 1 1 2 2 3 3], but hadd (and almost no other AVX instruction) will not
// cross lanes, so we end up with [0 1 0 1 2 3 2 3]
sum = _mm256_hadd_epi32(sum, sum);
// Permutes the middle two pairs to get the answers together.
sum = _mm256_permute4x64_epi64(sum, 0xd8);
if (kShiftAmount > 0) {
// Shift right with rounding to get the right number of mantissa bits.
__m256i rounding = _mm256_set1_epi32(1 << (kShiftAmount - 1));
sum = _mm256_add_epi32(sum, rounding);
sum = _mm256_srai_epi32(sum, kShiftAmount);
}
// Now |sum| contains [|res0|, |res1|, |res2|, |res3|, |res0|, |res1|,
// |res2|, |res3|]
if (relu) {
sum = _mm256_max_epi32(sum, _mm256_setzero_si256());
}
}
// In-line function to extract the 4x int32 results from |sum| to memory.
// Non-const reference for |sum| as it is a register.
inline void Extract4xint32(bool relu, int kShiftAmount, __m256i& sum,
int32_t** out_ptr) {
Compute4Results(relu, kShiftAmount, sum);
// Save the lower 128 bits (4x int32).
__m128i result = _mm256_extractf128_si256(sum, 0);
_mm_store_si128(reinterpret_cast<__m128i*>(*out_ptr), result);
*out_ptr += 4;
}
// In-line function to extract the 4x int32 results from sum to 4x int16 in
// memory.
// Non-const reference for |sum| as it is a register.
inline void Extract4xint16(bool relu, int kShiftAmount, __m256i& sum,
int16_t** out_ptr) {
Compute4Results(relu, kShiftAmount, sum);
// Clip to 16 bit range (with saturation) and pack in the bottom 64 bits.
// Converts the lower 4x int32 in bottom 128 bits to 4x int16 in bottom 64
// bits, replicated in the next 64 bits.
sum = _mm256_packs_epi32(sum, sum);
// Save 4x int 16 from the bottom 64 bits.
*reinterpret_cast<int64_t*>(*out_ptr) = _mm256_extract_epi64(sum, 0);
*out_ptr += 4;
}
// Performs the calculation y = A * x + b where A is a sparse matrix with a 4x4
// blocked pattern, x is a vector and b is vector. Weights are stored for this
// routine by making each 4x4 block contiguous. Blocks are ordered in standard
// row-major format. column indices are converted to deltas and then multiplied
// by 2 to convert to bytes, so that the value can be used directly to offset
// the pointer into the rhs vector.
//
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function. This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<
IsFixed16Type<WeightType>::value && IsFixed16Type<RhsType>::value &&
(IsFixed32Type<OutType>::value || IsFixed16Type<OutType>::value)>::type
SpMV_4x4(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
const int32_t* nnz_per_row, const RhsType* rhs_ptr,
const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
OutType* out_ptr, int64_t assigned_rows,
int64_t rows /* only used in SpMM variants */,
int64_t cols /* only used in SpMM variants */, int relu) {
constexpr int kShiftAmount =
TypeOfProduct<WeightType, RhsType>::type::kMantissaBits -
OutType::kMantissaBits;
static_assert(kShiftAmount >= 0,
"Result must have fewer mantissa bits than product");
for (int reduced_row = 0; reduced_row < assigned_rows; ++reduced_row) {
// Load the biases duplicated into a 256 bit register [0 1 2 3 0 1 2 3].
__m128i bias = _mm_load_si128(reinterpret_cast<__m128i const*>(bias_ptr));
__m256i biases = _mm256_set_m128i(bias, bias);
bias_ptr += 4;
// Swap the top two pairs: [0 1 2 3 2 3 0 1]
// TODO(b/188702959): consider |_mm256_permutevar8x32|, and set the index
// register outside the row loop.
biases = _mm256_permute4x64_epi64(biases, 0xb4);
// Duplicate the low pairs in each lane: [0 0 1 1 2 2 3 3].
biases = _mm256_unpacklo_epi32(biases, biases);
// Double the results to make up for the division by 4.
// TODO(b/188702959): consider moving this to where the biases are computed.
__m256i sum = _mm256_add_epi32(biases, biases);
// TODO(b/188702959): People don't like the old-fashioned, close-to-the-
// metal notation of *|nnz_per_row|++, so measure the effect of putting the
// increment in the for loop.
int reduced_col_count = *nnz_per_row;
++nnz_per_row;
for (int c = 0; c < reduced_col_count; ++c) {
int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
rhs_ptr += col_delta;
// Multiply this 4x4 block.
// Get the 4x int16 into the bottom of rhs_64.
__m128i rhs_64 =
_mm_loadl_epi64(reinterpret_cast<__m128i const*>(rhs_ptr));
// Load all 16 weights.
__m256i weights =
_mm256_load_si256(reinterpret_cast<__m256i const*>(weights_ptr));
// Broadcast the rhs, pretending that each is a 64-bit unit:
// [0123 0123 0123 0123].
__m256i rhs = _mm256_broadcastq_epi64(rhs_64);
weights_ptr += 16;
// |_mm256_madd_epi16| does 16x16x16=16x32 bit multiply and horizontally
// adds adjacent pairs to make 8x32 bit results. Add these to the sum.
sum = _mm256_add_epi32(sum, _mm256_madd_epi16(weights, rhs));
}
static_assert(
IsFixed16Type<OutType>::value || IsFixed32Type<OutType>::value,
"AVX2 kernel only supports fixed16 and fixed32 types");
// The only significant difference between fixed16 and fixed32 is the size
// of the storage unit. The registers have to be repacked accordingly.
if (IsFixed32Type<OutType>::value) {
Extract4xint32(relu, kShiftAmount, sum,
reinterpret_cast<int32_t**>(&out_ptr));
} else {
Extract4xint16(relu, kShiftAmount, sum,
reinterpret_cast<int16_t**>(&out_ptr));
}
}
}
// Performs the calculation y = A * x + b where A is a sparse matrix with a 4x4
// blocked pattern, x is a fat vector with 5 columns and b is vector. b is
// broadcast. Weights are stored for this routine by making each 4x4 block
// contiguous. Blocks are ordered in standard row-major format. column indices
// are converted to deltas and then multiplied by 2 to convert to bytes, so
// that the value can be used directly to offset the pointer into the rhs
// vector.
//
// NOTE: The bias is expected to have be multiplied by .25f prior to calling
// this function. This is automatically taken care of in SparseLinearLayer.
// The bias is reconstructed through horizontal additions, leads to a small
// speedup by reducing latencies at the end of the loop.
template <typename WeightType, typename RhsType, typename OutType>
typename std::enable_if<
IsFixed16Type<WeightType>::value && IsFixed16Type<RhsType>::value &&
(IsFixed32Type<OutType>::value || IsFixed16Type<OutType>::value)>::type
SpMM5_4x4(const WeightType* weights_ptr, const int16_t* col_deltas_bytes,
const int32_t* nnz_per_row, const RhsType* rhs_ptr,
const typename TypeOfProduct<WeightType, RhsType>::type* bias_ptr,
OutType* out_ptr, int64_t assigned_rows, int64_t rows, int64_t cols,
int relu) {
constexpr int kShiftAmount =
TypeOfProduct<WeightType, RhsType>::type::kMantissaBits -
OutType::kMantissaBits;
static_assert(kShiftAmount >= 0,
"Result must have fewer mantissa bits than product");
const RhsType* rhs_ptrs[5];
for (int i = 0; i < 5; ++i) rhs_ptrs[i] = rhs_ptr + i * cols;
OutType* out_ptrs[5];
for (int i = 0; i < 5; ++i) out_ptrs[i] = out_ptr + i * rows;
for (int reduced_row = 0; reduced_row < assigned_rows; ++reduced_row) {
// We will acumulate the results in 5 registers, sum_0 to sum_4.
// Load the biases duplicated into a 256 bit register [0 1 2 3 0 1 2 3].
__m128i bias = _mm_load_si128(reinterpret_cast<__m128i const*>(bias_ptr));
__m256i biases = _mm256_set_m128i(bias, bias);
bias_ptr += 4;
// Swap the top two pairs: [0 1 2 3 2 3 0 1]
biases = _mm256_permute4x64_epi64(biases, 0xb4);
// Duplicate the low pairs in each lane: [0 0 1 1 2 2 3 3].
biases = _mm256_unpacklo_epi32(biases, biases);
// Double the results to make up for the division by 4.
__m256i sum_0 = _mm256_add_epi32(biases, biases);
__m256i sum_1 = sum_0;
__m256i sum_2 = sum_0;
__m256i sum_3 = sum_0;
__m256i sum_4 = sum_0;
int reduced_col_count = *nnz_per_row;
++nnz_per_row;
for (int c = 0; c < reduced_col_count; ++c) {
int col_delta = *col_deltas_bytes++ / sizeof(RhsType);
for (int k = 0; k < 5; ++k) rhs_ptrs[k] += col_delta;
// Multiply this 4x4 block.
// Get the 4x int16 into the bottom of |rhs_64|.
__m128i rhs_64 =
_mm_loadl_epi64(reinterpret_cast<__m128i const*>(rhs_ptrs[0]));
// Load all 16 weights.
__m256i weights =
_mm256_load_si256(reinterpret_cast<__m256i const*>(weights_ptr));
// Broadcast the rhs, pretending that each is a 64-bit unit:
// [0123 0123 0123 0123].
__m256i rhs = _mm256_broadcastq_epi64(rhs_64);
weights_ptr += 16;
// |_mm256_madd_epi16| does 16x16x16=16x32 bit multiply and horizontally
// adds adjacent pairs to make 8x32 bit results. Add these to the sum.
sum_0 = _mm256_add_epi32(sum_0, _mm256_madd_epi16(weights, rhs));
rhs_64 = _mm_loadl_epi64(reinterpret_cast<__m128i const*>(rhs_ptrs[1]));
rhs = _mm256_broadcastq_epi64(rhs_64);
sum_1 = _mm256_add_epi32(sum_1, _mm256_madd_epi16(weights, rhs));
rhs_64 = _mm_loadl_epi64(reinterpret_cast<__m128i const*>(rhs_ptrs[2]));
rhs = _mm256_broadcastq_epi64(rhs_64);
sum_2 = _mm256_add_epi32(sum_2, _mm256_madd_epi16(weights, rhs));
rhs_64 = _mm_loadl_epi64(reinterpret_cast<__m128i const*>(rhs_ptrs[3]));
rhs = _mm256_broadcastq_epi64(rhs_64);
sum_3 = _mm256_add_epi32(sum_3, _mm256_madd_epi16(weights, rhs));
rhs_64 = _mm_loadl_epi64(reinterpret_cast<__m128i const*>(rhs_ptrs[4]));
rhs = _mm256_broadcastq_epi64(rhs_64);
sum_4 = _mm256_add_epi32(sum_4, _mm256_madd_epi16(weights, rhs));
}
static_assert(
IsFixed16Type<OutType>::value || IsFixed32Type<OutType>::value,
"AVX2 kernel only supports fixed16 and fixed32 types");
// The only significant difference between fixed16 and fixed32 is the size
// of the storage unit. The registers have to be repacked accordingly.
if (IsFixed32Type<OutType>::value) {
Extract4xint32(relu, kShiftAmount, sum_0,
reinterpret_cast<int32_t**>(&out_ptrs[0]));
Extract4xint32(relu, kShiftAmount, sum_1,
reinterpret_cast<int32_t**>(&out_ptrs[1]));
Extract4xint32(relu, kShiftAmount, sum_2,
reinterpret_cast<int32_t**>(&out_ptrs[2]));
Extract4xint32(relu, kShiftAmount, sum_3,
reinterpret_cast<int32_t**>(&out_ptrs[3]));
Extract4xint32(relu, kShiftAmount, sum_4,
reinterpret_cast<int32_t**>(&out_ptrs[4]));
} else {
Extract4xint16(relu, kShiftAmount, sum_0,
reinterpret_cast<int16_t**>(&out_ptrs[0]));
Extract4xint16(relu, kShiftAmount, sum_1,
reinterpret_cast<int16_t**>(&out_ptrs[1]));
Extract4xint16(relu, kShiftAmount, sum_2,
reinterpret_cast<int16_t**>(&out_ptrs[2]));
Extract4xint16(relu, kShiftAmount, sum_3,
reinterpret_cast<int16_t**>(&out_ptrs[3]));
Extract4xint16(relu, kShiftAmount, sum_4,
reinterpret_cast<int16_t**>(&out_ptrs[4]));
}
}
}
// Processes one GRU gate input with sigmoid.
template <int InputMantissaBits, int StateMantissaBits, bool SplitGates>
inline __m256i GRUGateSigmoid(const void* gate_ptr, const void* gate_other_ptr,
const __m256i& input,
const int32_t* sigmoid_table) {
__m256i gate = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(gate_ptr));
if (SplitGates) {
__m256i other =
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(gate_other_ptr));
gate = _mm256_add_epi32(gate, other);
}
gate = _mm256_add_epi32(gate, input);
// Compute sigmoids on reset and update.
return csrblocksparse::fixed32_sigmoid_fixed16<InputMantissaBits,
StateMantissaBits>(
sigmoid_table, gate);
}
// Processes the tanh and the final combination, returning the new GRU state.
template <int InputMantissaBits, int StateMantissaBits, bool SplitGates = false>
inline __m256i GRUGateState(const __m256i& cell, const __m256i& reset,
const __m256i& update,
const __m256i& rounding_offset,
const void* gate_ptr, const void* gate_other_ptr,
const void* gru_h_ptr, const int32_t* tanh_table) {
// Multiply the cell GRU output and the reset. There is a slight danger of
// loss of precision here, so use 32x32=64 bit and shift back after.
__m256i gru = _mm256_loadu_si256(reinterpret_cast<__m256i const*>(gate_ptr));
if (SplitGates) {
__m256i other_gru =
_mm256_loadu_si256(reinterpret_cast<__m256i const*>(gate_other_ptr));
gru = _mm256_add_epi32(gru, other_gru);
}
// This only computes the products of the low-order 32 bits of each pair.
__m256i gru_lo = _mm256_mul_epi32(gru, reset);
// Swap odd and even 32-bit units and do it again to get the high products.
gru = _mm256_shuffle_epi32(gru, 0xb1);
__m256i gru_hi = _mm256_mul_epi32(gru, _mm256_shuffle_epi32(reset, 0xb1));
// Now shift right to compensate for the multiply and re-interleave the
// 32-bit results.
// NOTE: There is no shift right arithmetic for 64 bit values until AVX512!
// Fortunately it doesn't matter, as the results are being truncated to 32
// bits and we aren't shifting right by more than 32 bits here.
gru_lo = _mm256_srli_epi64(gru_lo, StateMantissaBits);
// The upper results are shifted LEFT, so we can use blend to recombine in
// a single instruction.
gru_hi = _mm256_slli_epi64(gru_hi, 32 - StateMantissaBits);
// Recombine the 32 bit results from lo and hi, alternating.
gru = _mm256_blend_epi32(gru_lo, gru_hi, 0xaa);
gru = _mm256_add_epi32(cell, gru);
// Compute tanh on the result. Although this instantly discards a bunch of
// bits, there were only 7 surplus bits for the multiply, which isn't enough
// to do it as 16x16=32.
__m256i hbar =
csrblocksparse::fixed32_tanh_fixed16<InputMantissaBits,
StateMantissaBits>(tanh_table, gru);
// Load the 16-bit previous GRU state and sign-extend to 32 bits.
gru = _mm256_cvtepi16_epi32(
_mm_load_si128(reinterpret_cast<__m128i const*>(gru_h_ptr)));
gru = _mm256_sub_epi32(gru, hbar);
// Since |gru| is 16 bit sign-extended to 32, and |update| is the output of
// sigmoid, it is always contained within 16 bits and never negative, we can
// use |madd_epi16| to do 16x16=32 multiply with horizontal adding as the
// addend will always be zero, and this is twice as fast as full blown
// 32x32=32. The only possible problem is if the subtract above caused
// overflow.
gru = _mm256_madd_epi16(gru, update);
// Renormalize to fixed16. This time rounding is critical, as this is the
// output GRU state.
gru = _mm256_add_epi32(gru, rounding_offset);
gru = _mm256_srai_epi32(gru, StateMantissaBits);
return _mm256_add_epi32(gru, hbar);
}
template <typename Type>
typename std::enable_if<IsFixed32Type<Type>::value>::type SumVectors(
int start, int end, const Type* add1, const Type* add2, Type* result) {
constexpr int kSIMDWidth = 8;
for (int i = start; i < end; i += kSIMDWidth) {
__m256i data1 =
_mm256_load_si256(reinterpret_cast<__m256i const*>(add1 + i));
__m256i data2 =
_mm256_load_si256(reinterpret_cast<__m256i const*>(add2 + i));
data1 = _mm256_add_epi32(data1, data2);
_mm256_store_si256(reinterpret_cast<__m256i*>(result + i), data1);
}
}
template <typename Type>
typename std::enable_if<IsFixed16Type<Type>::value>::type SumVectors(
int start, int end, const Type* add1, const Type* add2, Type* result) {
constexpr int kSIMDWidth = 16;
for (int i = start; i < end; i += kSIMDWidth) {
__m256i data1 =
_mm256_load_si256(reinterpret_cast<__m256i const*>(add1 + i));
__m256i data2 =
_mm256_load_si256(reinterpret_cast<__m256i const*>(add2 + i));
data1 = _mm256_add_epi16(data1, data2);
_mm256_store_si256(reinterpret_cast<__m256i*>(result + i), data1);
}
}
#endif // __AVX2__
} // namespace detail
} // namespace csrblocksparse
#undef LABEL_COL_LOOP
#undef LABEL_ROW_LOOP
#undef LABEL_SKIP_COL_LOOP
#undef LABEL_TOP_LOOP
#endif // __AVX__
#endif // LYRA_CODEC_SPARSE_MATMUL_COMPUTE_KERNELS_AVX_H_
|