File size: 7,489 Bytes
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
 * Copyright 2021 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LYRA_CODEC_SPARSE_MATMUL_LAYERS_MASKED_SPARSE_MATRIX_H_
#define LYRA_CODEC_SPARSE_MATMUL_LAYERS_MASKED_SPARSE_MATRIX_H_

#include <algorithm>
#include <cstdio>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "sparse_matmul/vector/cache_aligned_vector.h"

namespace csrblocksparse {

// MaskedSparseMatrix serves two purposes:
// 1) It is useful as a reference implementation of SpMV for correctness
//    checking the much more complicated implementations in CSRBlockSparseMatrix
// 2) This is the format that sparse matrices are represented after pruning
//    in TF.  This class provides a bridge to getting these parameters into
//    a compressed form suitable for computation and serialization.
//
//  MaskedSparseMatrix<float> matrix(rows, cols, mask_from_tf, values_from_tf);
//  CSRBlockSparseMatrix<float, bfloat16, int16_t> csr_matrix(matrix);
//  csr_matrix.Multiply(rhs, bias, &out);
template <typename T>
class MaskedSparseMatrix {
 public:
  MaskedSparseMatrix() {}

  // Construct a MaskedSparseMatrix of the given size, sparsity and block size.
  // This is mainly useful for testing.
  MaskedSparseMatrix(int rows, int cols, float sparsity, int block_height = 1,
                     int block_width = 1, float constant = 1.f,
                     bool random = true)
      : rows_(rows), cols_(cols), sparsity_(sparsity) {
    CHECK_EQ(rows % block_height, 0);
    CHECK_EQ(cols % block_width, 0);

    init(sparsity, block_height, block_width, constant, random);
  }

  // Construct from an existing mask and values (most likely from a TF model).
  template <typename MaskType>
  MaskedSparseMatrix(int rows, int cols, const MaskType* mask, const T* values)
      : rows_(rows), cols_(cols) {
    mask_.resize(rows * cols);
    values_.resize(rows * cols);
    std::copy_n(mask, rows * cols, mask_.begin());
    std::copy_n(values, rows * cols, values_.begin());
    sparsity_ =
        1.f - std::accumulate(mask_.begin(), mask_.end(), 0.f) / mask_.size();
  }

  const std::vector<int>& mask() const { return mask_; }
  const std::vector<T>& values() const { return values_; }
  T* data() { return values_.data(); }
  const T* data() const { return values_.data(); }

  int rows() const { return rows_; }
  int cols() const { return cols_; }
  float sparsity() const { return sparsity_; }

  void Print() const {
    absl::PrintF("-------Values---------\n");
    for (int r = 0; r < rows_; ++r) {
      for (int c = 0; c < cols_; ++c) {
        absl::PrintF("%+6.3f ", static_cast<float>(values_[r * cols_ + c]));
      }
      absl::PrintF("\n");
    }
    absl::PrintF("-------Mask---------\n");
    for (int r = 0; r < rows_; ++r) {
      for (int c = 0; c < cols_; ++c) {
        printf("%2d ", mask_[r * cols_ + c]);
      }
      absl::PrintF("\n");
    }
  }

  // This routine is useful for rounding the possibly higher precision values
  // stored in this class to a lower precision, so that correctness checks
  // between this class and CSRBlockSparseMatrix can have a tighter tolerance.
  template <typename U>
  void CastWeights() {
    for (int i = 0; i < values_.size(); ++i) {
      values_[i] = static_cast<T>(U(values_[i]));
    }
  }

  // Only meant for correctness checking.
  // RhsClassType is meant to be either CacheAlignedVector OR
  // FatCacheAlignedVector.
  // The weight matrix is ROW MAJOR and RhsClassType is COLUMN MAJOR.
  // |bias| is broadcast if |rhs| has more than one column.
  template <typename RhsClassType, typename BiasType, typename OutClassType,
            typename RhsType = typename RhsClassType::value_type,
            typename OutType = typename OutClassType::value_type>
  void SpMM_bias(const RhsClassType& rhs,
                 const CacheAlignedVector<BiasType>& bias, OutClassType* out,
                 bool relu = false) {
    for (int r = 0; r < rows_; ++r) {
      for (int n = 0; n < rhs.cols(); ++n) {
        float sum = 0.f;
        const RhsType* rhs_ptr = rhs.data() + n * rhs.rows();
        OutType* out_ptr = out->data() + n * out->rows();
        const int* mask_ptr = mask_.data() + r * cols_;
        const T* value_ptr = values_.data() + r * cols_;
        for (int c = 0; c < cols_; ++c) {
          sum += mask_ptr[c] * static_cast<float>(value_ptr[c]) *
                 static_cast<float>(rhs_ptr[c]);
        }
        out_ptr[r] = static_cast<OutType>(
            relu ? std::max(sum + static_cast<float>(bias[r]), 0.f)
                 : sum + static_cast<float>(bias[r]));
      }
    }
  }

 private:
  // Generate a random matrix with the specified sparsity.
  // Useful for testing.
  void init(float sparsity, int block_height, int block_width, float constant,
            bool random = true) {
    int reduced_rows = rows_ / block_height;
    int reduced_cols = cols_ / block_width;
    mask_.resize(rows_ * cols_, 0);

    // Fill with non-zero value to make sure masking works.
    values_.resize(rows_ * cols_, static_cast<T>(2.f));

    std::mt19937 generator(0);
    std::uniform_real_distribution<float> dist_sparsity;
    std::uniform_real_distribution<float> dist_value(-1.f, 1.f);
    int nnz = 0;
    while (nnz == 0) {
      for (int r = 0; r < reduced_rows; ++r) {
        for (int c = 0; c < reduced_cols; ++c) {
          if (dist_sparsity(generator) > sparsity) {
            nnz++;
            for (int i = 0; i < block_height; ++i) {
              for (int j = 0; j < block_width; ++j) {
                mask_[(r * block_height + i) * cols_ + block_width * c + j] = 1;
                values_[(r * block_height + i) * cols_ + block_width * c + j] =
                    static_cast<T>(random ? dist_value(generator) : constant);
              }
            }
          }
        }
      }
    }
  }

  std::vector<int> mask_;
  std::vector<T> values_;
  int rows_;
  int cols_;
  float sparsity_;
};

template <typename T>
class MaskedLinearLayer {
 public:
  MaskedLinearLayer(MaskedSparseMatrix<T>&& weights,
                    CacheAlignedVector<T>&& bias)
      : weights_(std::move(weights)), bias_(std::move(bias)) {}

  MaskedLinearLayer() {}

  template <typename U>
  void CastWeights() {
    weights_.template CastWeights<U>();
  }

  // Does Ax + b where A is a masked sparse ROW MAJOR matrix and
  // x is a COLUMN MAJOR dense vector or matrix.  Bias is a vector that is
  // broadcast is rhs has more than one column.
  template <typename FatVector>
  void SpMM_bias(const FatVector& rhs, FatVector* out, bool relu = false) {
    static_assert(std::is_same<typename FatVector::value_type, T>::value,
                  "FatVector value_type must match masked_linear_layer type");
    weights_.SpMM_bias(rhs, bias_, out, relu);
  }

 private:
  MaskedSparseMatrix<T> weights_;
  CacheAlignedVector<T> bias_;
};

}  // namespace csrblocksparse

#endif  // LYRA_CODEC_SPARSE_MATMUL_LAYERS_MASKED_SPARSE_MATRIX_H_