Spaces:
Runtime error
Runtime error
File size: 17,537 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_LAYERS_SPARSE_LINEAR_LAYER_H_
#define LYRA_CODEC_SPARSE_MATMUL_LAYERS_SPARSE_LINEAR_LAYER_H_
#include <cstdint>
#include "absl/memory/memory.h"
#include "glog/logging.h"
#include "sparse_matmul/layers/csr_blocksparse_matrix.h"
#include "sparse_matmul/layers/masked_sparse_matrix.h"
#include "sparse_matmul/numerics/type_utils.h"
#include "sparse_matmul/os/coop_threads.h"
#include "sparse_matmul/vector/cache_aligned_vector.h"
namespace csrblocksparse {
template <typename WeightType, typename RhsType,
typename BiasType = typename TypeOfProduct<WeightType, RhsType>::type,
typename DeltaType = int16_t>
class SparseLinearLayer {
public:
SparseLinearLayer() {}
SparseLinearLayer(CsrBlockSparseMatrix<WeightType, RhsType>&& sparse_matrix,
CacheAlignedVector<BiasType>&& bias)
: sparse_matrix_(std::move(sparse_matrix)), full_bias_(std::move(bias)) {
CHECK_EQ(sparse_matrix_.rows(), full_bias_.size());
// Some kernels expect that the bias is divided by 4, so we store a second
// copy of a quarter of the bias.
// TODO(b/189958858): Remove the quartered bias if it can be done without
// loss of speed, and rename the |full_bias_| member back to |bias_|.
bias_ = full_bias_;
for (int i = 0; i < bias_.size(); ++i) {
bias_[i] = static_cast<BiasType>(.25f * static_cast<float>(bias_[i]));
}
}
SparseLinearLayer(
const SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>& src) {
*this = src;
}
SparseLinearLayer& operator=(
const SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>& src) {
sparse_matrix_ = src.sparse_matrix_;
bias_ = src.bias_;
full_bias_ = src.full_bias_;
mid_output_ = src.mid_output_;
thread_layers_ = src.thread_layers_;
num_threads_ = src.num_threads_;
if (src.split_pc_) {
split_pc_ = absl::make_unique<ProducerConsumer>(
src.split_pc_->num_producers(), src.split_pc_->num_consumers());
}
return *this;
}
// Does Ax + b where A is a block sparse compressed sparse row matrix and
// x is a COLUMN MAJOR dense vector or matrix. Bias is a vector that is
// broadcast if rhs has more than one column.
template <typename RhsClassType, typename OutType>
void SpMM_bias(const RhsClassType& rhs, OutType* out, bool relu = false,
int tid = 0, SpinBarrier* barrier = nullptr) const {
static_assert(
std::is_same<typename RhsClassType::value_type, RhsType>::value, "");
sparse_matrix_.SpMM_bias(rhs, bias_, out, relu, tid, barrier);
}
// Multiplies a sparse matrix by a possibly dense matrix, as SpMM_bias above,
// and then samples from the output (softmax distribution) layer.
template <typename RhsClassType, typename OutType>
int SpMM_bias_Sample(const RhsClassType& rhs, OutType* out, float temperature,
int tid, SpinBarrier* barrier, std::minstd_rand* gen,
CacheAlignedVector<float>* scratch) const {
static_assert(
std::is_same<typename RhsClassType::value_type, RhsType>::value, "");
return sparse_matrix_.SpMM_bias_Sample(rhs, bias_, out, temperature, tid,
barrier, gen, scratch);
}
template <typename RhsClassType, typename OutType>
void MatVec(const RhsClassType& rhs, bool relu, int tid, int replicas,
int output_stride, OutType* output,
SpinBarrier* barrier = nullptr) {
static_assert(
std::is_same<typename RhsClassType::value_type, RhsType>::value, "");
#ifdef __AVX2__
if (block_width() == 4 && (block_height() == 4 || block_height() == 8) &&
!IsCustomFloatType<WeightType>::value) {
if (!IsSplit()) {
sparse_matrix_.MatVec(rhs.cast_data(), full_bias_.cast_data(), relu,
tid, replicas, output_stride, output->data());
if (barrier != nullptr) barrier->barrier();
return;
}
// NOTE: Until the quartered bias is removed it is a bad idea to split
// for ARM in the same way, as we would have to quarter the output of
// the first part of the split before running the second part.
// Signal completion of the previous MatVec.
split_pc_->produce();
PartLinearLayer& thread_part = thread_layers_[tid];
auto offset_output =
sparse_matrix_.thread_bounds().OffsetOutput(output->data(), tid);
auto mid_output =
sparse_matrix_.thread_bounds().OffsetOutput(mid_output_.data(), tid);
auto offset_bias = sparse_matrix_.thread_bounds().OffsetOutput(
mid_output_.cast_data(), tid);
// We can continue to consume the data that this thread produced and
// compute just the |self_matrix| part.
// No |relu| or |replicas|, as this is only a partial matmul.
// |tid| is always zero because the matrix has been split by tid.
thread_part.self_matrix.MatVec(
rhs.cast_data(), thread_part.full_bias.cast_data(), /*relu=*/false,
/*tid=*/0, /*replicas=*/1, output_stride, mid_output);
// We have to wait for the other threads to finish working on the previous
// MatMul before consuming the rest of |rhs|.
split_pc_->consume();
thread_part.other_matrix.MatVec(rhs.cast_data(), offset_bias, relu,
/*tid=*/0, replicas, output_stride,
offset_output);
return;
}
#endif
DCHECK_EQ(replicas, 1) << "Must have single replica for SpMM API";
if (IsSplit()) {
// Generics aren't setup to use a split matrix. This will be inefficient.
split_pc_->produce();
split_pc_->consume();
}
if (block_height() == 8) {
// We are currently forced to use MatVec generics for this case.
LOG(WARNING) << "Need to implement MatVec for 8x4 for non-AVX2 targets!!";
sparse_matrix_.MatVec(rhs.cast_data(), full_bias_.cast_data(), relu, tid,
replicas, output_stride, output->data());
if (barrier != nullptr) barrier->barrier();
} else {
sparse_matrix_.SpMM_bias(rhs, bias_, output, relu, tid, barrier);
}
}
int rows() const { return sparse_matrix_.rows(); }
int cols() const { return sparse_matrix_.cols(); }
float sparsity() const { return sparse_matrix_.sparsity(); }
int block_width() const { return sparse_matrix_.block_width(); }
int block_height() const { return sparse_matrix_.block_height(); }
int num_threads() const { return sparse_matrix_.num_threads(); }
const CacheAlignedVector<BiasType>& bias() const { return bias_; }
const std::vector<int>& split_points() const {
return sparse_matrix_.split_points();
}
bool IsSplit() const {
return !thread_layers_.empty() && split_pc_ != nullptr;
}
std::size_t bytes() const { return sparse_matrix_.bytes() + bias_.bytes(); }
void Print() const {
printf("Matrix\n");
sparse_matrix_.Print();
printf("Bias\n");
bias_.Print();
}
// Combines adjacent row blocks, doubling the block height.
// This necessarily involves adding zero weights where the blocks don't align
// across adjacent pairs of rows, so use with caution, as the resulting matrix
// is most likely to run slower if very sparse to begin with.
// In the few cases where the blocks do mostly align, the resulting matmul
// could be much faster, as the number of reads of the rhs will be halved.
void DoubleBlockHeight() { sparse_matrix_.DoubleBlockHeight(); }
// Cache_line_size is provided only for testing. Normally uses a value for
// the current architecture.
int PrepareForThreads(int num_threads, int cache_line_size = -1) {
num_threads_ = num_threads;
if (num_threads_ > 1) {
split_pc_ =
absl::make_unique<ProducerConsumer>(num_threads_, num_threads_);
} else {
split_pc_.reset(nullptr);
}
return sparse_matrix_.PrepareForThreads(num_threads, cache_line_size);
}
// Partitions the matrix into pieces by thread.
// In this matrix, we can go ahead and calculate the part that only depends
// on rhs inputs that were generated by this thread in the previous matvec,
// without having to use any thread synchronization, and only after that do we
// have to wait for the other threads to finish the previous matvec.
// So we split the matrix using the |split_points| from the previous matrix
// into 2 * |num_threads_| pieces: self and other for each thread, being the
// parts that can be calculated before and after the other threads have
// completed their calculation of the previous matvec.
// We then have to use a ProducerConsumer lock instead of a SpinBarrier to
// synchronize the data produced by the other threads.
void SliceForThreads(const std::vector<int>& split_points) {
thread_layers_.clear();
thread_layers_.reserve(num_threads_);
LOG(INFO) << "Slicing " << rows() << "x" << cols() << " matrix for "
<< num_threads_ << " threads";
for (int tid = 0; tid < num_threads_; ++tid) {
thread_layers_.emplace_back(
sparse_matrix_, full_bias_, bias_, tid,
split_points[tid] * sparse_matrix_.block_height(),
split_points[tid + 1] * sparse_matrix_.block_height());
}
mid_output_ =
std::move(csrblocksparse::CacheAlignedVector<BiasType>(rows()));
mid_output_.FillZero();
}
// Splits the layer by inputs into 2 equal pieces. Each of the resulting
// layers should be computed independently on the first and second halves of
// the inputs respectively and the results added to achieve the same effect
// as the original layer.
void SplitInputs(
SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>* part1,
SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>* part2) {
CsrBlockSparseMatrix<WeightType, RhsType> matrix1(
sparse_matrix_.SplitByColumn(0, sparse_matrix_.cols() / 2));
CsrBlockSparseMatrix<WeightType, RhsType> matrix2(
sparse_matrix_.SplitByColumn(sparse_matrix_.cols() / 2,
sparse_matrix_.cols()));
*part1 =
std::move(SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>(
std::move(matrix1),
std::move(CacheAlignedVector<BiasType>(full_bias_))));
CacheAlignedVector<BiasType> bias2(sparse_matrix_.rows());
bias2.FillZero();
*part2 =
std::move(SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>(
std::move(matrix2), std::move(bias2)));
}
// Splits the layer by outputs into 2 equal pieces. Each of the resulting
// layers should be computed independently on the full inputs and the results
// concatenated to achieve the same effect as the original layer.
void SplitOutputs(
SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>* part1,
SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>* part2) {
LOG(INFO) << "input rows=" << sparse_matrix_.rows()
<< ", cols=" << sparse_matrix_.cols();
CsrBlockSparseMatrix<WeightType, RhsType> matrix1(
sparse_matrix_.SplitByRow(0, sparse_matrix_.rows() / 2));
CsrBlockSparseMatrix<WeightType, RhsType> matrix2(sparse_matrix_.SplitByRow(
sparse_matrix_.rows() / 2, sparse_matrix_.rows()));
CacheAlignedVector<BiasType> bias1(full_bias_, 0, full_bias_.size() / 2);
*part1 =
std::move(SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>(
std::move(matrix1), std::move(bias1)));
CacheAlignedVector<BiasType> bias2(full_bias_, full_bias_.size() / 2,
full_bias_.size());
*part2 =
std::move(SparseLinearLayer<WeightType, RhsType, BiasType, DeltaType>(
std::move(matrix2), std::move(bias2)));
}
private:
// Simple struct to hold a partitioned layer.
struct PartLinearLayer {
// The original matrix is first split by row to generate only the outputs
// for the given tid. The |row_sub_matrix| is then split by column into two
// partitions:
// self is the part for which the rhs elements in [|start_col|, |end_col|)
// were generated by this thread in some previous matmul.
// |other| is the rest of the columns that require rhs elements from other
// threads.
// NOTE that| start_col|, |end_col| are in raw columns, not blocks.
PartLinearLayer(const CsrBlockSparseMatrix<WeightType, RhsType>& matrix,
const CacheAlignedVector<BiasType>& bias,
const CacheAlignedVector<BiasType>& bias_4, int tid,
int start_col, int end_col) {
int block_height = matrix.block_height();
// Split the input matrix by row, selecting only the rows relevant to
// thread tid.
int start_row = matrix.split_points()[tid] * block_height;
int end_row = matrix.split_points()[tid + 1] * block_height;
LOG(INFO) << "input cols [" << start_col << "," << end_col << ") rows ["
<< start_row << "," << end_row << ")";
CsrBlockSparseMatrix<WeightType, RhsType> row_sub_matrix =
matrix.SplitByRow(start_row, end_row);
// Partition into the columns that use rhs elements that thread tid
// produced in a previous matmul, and the other rhs elements.
// NOTE that we |keep_rhs_size|=true so that each matrix can operate on
// the same rhs input vector. The self matrix just guarantees not to
// access any of the elements that are generated by another thread.
self_matrix = std::move(row_sub_matrix.SplitByColumn(
start_col, end_col, /*keep_rhs_size=*/true));
self_matrix.PrepareForThreads(1);
// The reversed start and end slice out the complement of [start, end).
other_matrix = std::move(row_sub_matrix.SplitByColumn(
end_col, start_col, /*keep_rhs_size=*/true));
other_matrix.PrepareForThreads(1);
full_bias =
std::move(CacheAlignedVector<BiasType>(bias, start_row, end_row));
// TODO(b/189958858): Eliminate the quarter bias from all the code.
quarter_bias =
std::move(CacheAlignedVector<BiasType>(bias_4, start_row, end_row));
}
// The part of the matrix that only depends on this thread for rhs inputs.
CsrBlockSparseMatrix<WeightType, RhsType> self_matrix;
CacheAlignedVector<BiasType> full_bias;
CacheAlignedVector<BiasType> quarter_bias;
// The part of the matrix that uses rhs inputs from other threads.
CsrBlockSparseMatrix<WeightType, RhsType> other_matrix;
};
CsrBlockSparseMatrix<WeightType, RhsType, DeltaType> sparse_matrix_;
CacheAlignedVector<BiasType> bias_;
CacheAlignedVector<BiasType> full_bias_;
// Output from the self_matrix that will be given to |other_matrix| as bias.
CacheAlignedVector<BiasType> mid_output_;
// One partitioned pair of matrices for each thread.
std::vector<PartLinearLayer> thread_layers_;
// Producer-consumer lock used to wait between computing |self_matrix| and
// |other_matrix| for the other threads to finish the *previous* matvec.
std::unique_ptr<ProducerConsumer> split_pc_;
int num_threads_ = 0;
};
template <typename WeightType, typename RhsType>
SparseLinearLayer<WeightType, RhsType> CreateRandomLayer(int rows, int cols,
float sparsity,
int block_height = 1,
int block_width = 1) {
typedef typename TypeOfProduct<WeightType, RhsType>::type BiasType;
CacheAlignedVector<BiasType> bias(rows);
bias.FillRandom();
auto masked_matrix = MaskedSparseMatrix<float>(rows, cols, sparsity,
block_height, block_width);
auto sparse_matrix = CsrBlockSparseMatrix<WeightType, RhsType>(masked_matrix);
return SparseLinearLayer<WeightType, RhsType>(std::move(sparse_matrix),
std::move(bias));
}
template <typename WeightType, typename RhsType>
SparseLinearLayer<WeightType, RhsType> CreateConstantLayer(
int rows, int cols, float sparsity, float constant = 1.f) {
typedef typename TypeOfProduct<WeightType, RhsType>::type BiasType;
CacheAlignedVector<BiasType> bias(rows);
bias.FillOnes();
MaskedSparseMatrix<float> masked_matrix(rows, cols, sparsity,
/*block_height=*/1, /*block_width=*/1,
constant, /*random=*/false);
CsrBlockSparseMatrix<WeightType, RhsType> sparse_matrix(masked_matrix);
return SparseLinearLayer<WeightType, RhsType>(std::move(sparse_matrix),
std::move(bias));
}
} // namespace csrblocksparse
#endif // LYRA_CODEC_SPARSE_MATMUL_LAYERS_SPARSE_LINEAR_LAYER_H_
|