Spaces:
Runtime error
Runtime error
File size: 7,041 Bytes
df1ad02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
"""
WaveGRU model: melspectrogram => mu-law encoded waveform
"""
import jax
import jax.numpy as jnp
import pax
class ReLU(pax.Module):
def __call__(self, x):
return jax.nn.relu(x)
def dilated_residual_conv_block(dim, kernel, stride, dilation):
"""
Use dilated convs to enlarge the receptive field
"""
return pax.Sequential(
pax.Conv1D(dim, dim, kernel, stride, dilation, "VALID", with_bias=False),
pax.LayerNorm(dim, -1, True, True),
ReLU(),
pax.Conv1D(dim, dim, 1, 1, 1, "VALID", with_bias=False),
pax.LayerNorm(dim, -1, True, True),
ReLU(),
)
def tile_1d(x, factor):
"""
Tile tensor of shape N, L, D into N, L*factor, D
"""
N, L, D = x.shape
x = x[:, :, None, :]
x = jnp.tile(x, (1, 1, factor, 1))
x = jnp.reshape(x, (N, L * factor, D))
return x
def up_block(dim, factor):
"""
Tile >> Conv >> BatchNorm >> ReLU
"""
return pax.Sequential(
lambda x: tile_1d(x, factor),
pax.Conv1D(dim, dim, 2 * factor, stride=1, padding="VALID", with_bias=False),
pax.LayerNorm(dim, -1, True, True),
ReLU(),
)
class Upsample(pax.Module):
"""
Upsample melspectrogram to match raw audio sample rate.
"""
def __init__(self, input_dim, upsample_factors):
super().__init__()
self.input_conv = pax.Sequential(
pax.Conv1D(input_dim, 512, 1, with_bias=False),
pax.LayerNorm(512, -1, True, True),
)
self.upsample_factors = upsample_factors
self.dilated_convs = [
dilated_residual_conv_block(512, 3, 1, 2**i) for i in range(5)
]
self.up_factors = upsample_factors[:-1]
self.up_blocks = [up_block(512, x) for x in self.up_factors]
self.final_tile = upsample_factors[-1]
def __call__(self, x):
x = self.input_conv(x)
for residual in self.dilated_convs:
y = residual(x)
pad = (x.shape[1] - y.shape[1]) // 2
x = x[:, pad:-pad, :] + y
for f in self.up_blocks:
x = f(x)
x = tile_1d(x, self.final_tile)
return x
class Pruner(pax.Module):
"""
Base class for pruners
"""
def __init__(self, update_freq=500):
super().__init__()
self.update_freq = update_freq
def compute_sparsity(self, step):
"""
Two-stages pruning
"""
t = jnp.power(1 - (step * 1.0 - 1_000) / 300_000, 3)
z = 0.5 * jnp.clip(1.0 - t, a_min=0, a_max=1)
for i in range(4):
t = jnp.power(1 - (step * 1.0 - 1_000 - 400_000 - i * 200_000) / 100_000, 3)
z = z + 0.1 * jnp.clip(1 - t, a_min=0, a_max=1)
return z
def prune(self, step, weights):
"""
Return a mask
"""
z = self.compute_sparsity(step)
x = weights
H, W = x.shape
x = x.reshape(H // 4, 4, W // 4, 4)
x = jnp.abs(x)
x = jnp.sum(x, axis=(1, 3), keepdims=True)
q = jnp.quantile(jnp.reshape(x, (-1,)), z)
x = x >= q
x = jnp.tile(x, (1, 4, 1, 4))
x = jnp.reshape(x, (H, W))
return x
class GRUPruner(Pruner):
def __init__(self, gru, update_freq=500):
super().__init__(update_freq=update_freq)
self.xh_zr_fc_mask = jnp.ones_like(gru.xh_zr_fc.weight) == 1
self.xh_h_fc_mask = jnp.ones_like(gru.xh_h_fc.weight) == 1
def __call__(self, gru: pax.GRU):
"""
Apply mask after an optimization step
"""
zr_masked_weights = jnp.where(self.xh_zr_fc_mask, gru.xh_zr_fc.weight, 0)
gru = gru.replace_node(gru.xh_zr_fc.weight, zr_masked_weights)
h_masked_weights = jnp.where(self.xh_h_fc_mask, gru.xh_h_fc.weight, 0)
gru = gru.replace_node(gru.xh_h_fc.weight, h_masked_weights)
return gru
def update_mask(self, step, gru: pax.GRU):
"""
Update internal masks
"""
xh_z_weight, xh_r_weight = jnp.split(gru.xh_zr_fc.weight, 2, axis=1)
xh_z_weight = self.prune(step, xh_z_weight)
xh_r_weight = self.prune(step, xh_r_weight)
self.xh_zr_fc_mask *= jnp.concatenate((xh_z_weight, xh_r_weight), axis=1)
self.xh_h_fc_mask *= self.prune(step, gru.xh_h_fc.weight)
class LinearPruner(Pruner):
def __init__(self, linear, update_freq=500):
super().__init__(update_freq=update_freq)
self.mask = jnp.ones_like(linear.weight) == 1
def __call__(self, linear: pax.Linear):
"""
Apply mask after an optimization step
"""
return linear.replace(weight=jnp.where(self.mask, linear.weight, 0))
def update_mask(self, step, linear: pax.Linear):
"""
Update internal masks
"""
self.mask *= self.prune(step, linear.weight)
class WaveGRU(pax.Module):
"""
WaveGRU vocoder model
"""
def __init__(
self, mel_dim=80, embed_dim=32, rnn_dim=512, upsample_factors=(5, 4, 3, 5)
):
super().__init__()
self.embed = pax.Embed(256, embed_dim)
self.upsample = Upsample(input_dim=mel_dim, upsample_factors=upsample_factors)
self.rnn = pax.GRU(embed_dim + rnn_dim, rnn_dim)
self.o1 = pax.Linear(rnn_dim, rnn_dim)
self.o2 = pax.Linear(rnn_dim, 256)
self.gru_pruner = GRUPruner(self.rnn)
self.o1_pruner = LinearPruner(self.o1)
self.o2_pruner = LinearPruner(self.o2)
def output(self, x):
x = self.o1(x)
x = jax.nn.relu(x)
x = self.o2(x)
return x
@jax.jit
def inference_step(self, rnn_state, mel, rng_key, x):
"""one inference step"""
x = self.embed(x)
x = jnp.concatenate((x, mel), axis=-1)
rnn_state, x = self.rnn(rnn_state, x)
x = self.output(x)
rng_key, next_rng_key = jax.random.split(rng_key, 2)
x = jax.random.categorical(rng_key, x, axis=-1)
return rnn_state, next_rng_key, x
def inference(self, mel, no_gru=False, seed=42):
"""
generate waveform form melspectrogram
"""
y = self.upsample(mel)
if no_gru:
return y
x = jnp.array([127], dtype=jnp.int32)
rnn_state = self.rnn.initial_state(1)
output = []
rng_key = jax.random.PRNGKey(seed)
for i in range(y.shape[1]):
rnn_state, rng_key, x = self.inference_step(rnn_state, y[:, i], rng_key, x)
output.append(x)
x = jnp.concatenate(output, axis=0)
return x
def __call__(self, mel, x):
x = self.embed(x)
y = self.upsample(mel)
pad_left = (x.shape[1] - y.shape[1]) // 2
pad_right = x.shape[1] - y.shape[1] - pad_left
x = x[:, pad_left:-pad_right]
x = jnp.concatenate((x, y), axis=-1)
_, x = pax.scan(
self.rnn,
self.rnn.initial_state(x.shape[0]),
x,
time_major=False,
)
x = self.output(x)
return x
|