Spaces:
Runtime error
Runtime error
File size: 2,705 Bytes
3dbfd73 df1ad02 3dbfd73 df1ad02 2d49958 df1ad02 3dbfd73 df1ad02 a31737b df1ad02 012ab0b df1ad02 d1a84ee df1ad02 d1a84ee df1ad02 da16845 7383c33 d1a84ee ddf7e7d d1a84ee df1ad02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import jax
import jax.numpy as jnp
import librosa
import numpy as np
import pax
from text import english_cleaners
from utils import (
create_tacotron_model,
load_tacotron_ckpt,
load_tacotron_config,
load_wavegru_ckpt,
load_wavegru_config,
)
from wavegru import WaveGRU
os.environ["PHONEMIZER_ESPEAK_LIBRARY"] = "./espeak/usr/lib/libespeak-ng.so.1.1.51"
from phonemizer.backend import EspeakBackend
backend = EspeakBackend("en-us", preserve_punctuation=True, with_stress=True)
def load_tacotron_model(alphabet_file, config_file, model_file):
"""load tacotron model to memory"""
with open(alphabet_file, "r", encoding="utf-8") as f:
alphabet = f.read().split("\n")
config = load_tacotron_config(config_file)
net = create_tacotron_model(config)
_, net, _ = load_tacotron_ckpt(net, None, model_file)
net = net.eval()
net = jax.device_put(net)
return alphabet, net, config
tacotron_inference_fn = pax.pure(lambda net, text: net.inference(text, max_len=2400))
def text_to_mel(net, text, alphabet, config):
"""convert text to mel spectrogram"""
text = english_cleaners(text)
text = backend.phonemize([text], strip=True)[0]
text = text + config["END_CHARACTER"]
text = text + config["PAD"] * (100 - (len(text) % 100))
tokens = []
for c in text:
if c in alphabet:
tokens.append(alphabet.index(c))
tokens = jnp.array(tokens, dtype=jnp.int32)
mel = tacotron_inference_fn(net, tokens[None])
return mel
def load_wavegru_net(config_file, model_file):
"""load wavegru to memory"""
config = load_wavegru_config(config_file)
net = WaveGRU(
mel_dim=config["mel_dim"],
rnn_dim=config["rnn_dim"],
upsample_factors=config["upsample_factors"],
has_linear_output=True,
)
_, net, _ = load_wavegru_ckpt(net, None, model_file)
net = net.eval()
net = jax.device_put(net)
return config, net
wavegru_inference = pax.pure(lambda net, mel: net.inference(mel, no_gru=True))
def mel_to_wav(net, netcpp, mel, config):
"""convert mel to wav"""
if len(mel.shape) == 2:
mel = mel[None]
pad = config["num_pad_frames"] // 2 + 2
mel = np.pad(mel, [(0, 0), (pad, pad), (0, 0)], mode="edge")
ft = wavegru_inference(net, mel)
ft = jax.device_get(ft[0])
wav = netcpp.inference(ft, 1.0)
wav = np.array(wav)
wav = librosa.mu_expand(wav - 127, mu=255)
wav = librosa.effects.deemphasis(wav, coef=0.86)
wav = wav * 2.0
wav = wav / max(1.0, np.max(np.abs(wav)))
wav = wav * 2**15
wav = np.clip(wav, a_min=-(2**15), a_max=(2**15) - 1)
wav = wav.astype(np.int16)
return wav
|