File size: 4,322 Bytes
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba53f
 
 
 
d1a84ee
 
 
 
7911639
d1a84ee
 
 
41ba53f
 
 
 
 
 
d1a84ee
 
 
 
 
 
 
7911639
 
41ba53f
d1a84ee
 
 
 
41ba53f
d1a84ee
 
 
 
 
 
 
41ba53f
d1a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41ba53f
 
 
d1a84ee
41ba53f
d1a84ee
 
 
 
 
 
 
41ba53f
d1a84ee
41ba53f
 
 
 
 
 
 
 
 
d1a84ee
 
 
 
41ba53f
d1a84ee
 
 
 
 
 
 
e4abdca
 
 
 
 
 
 
 
 
 
 
 
d1a84ee
 
 
 
 
 
 
 
 
41ba53f
d1a84ee
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
WaveGRU:
> Embed > GRU > O1 > O2 > Sampling > ...
*/

#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

#include <iostream>
#include <random>
#include <vector>

#include "sparse_matmul/sparse_matmul.h"
namespace py = pybind11;
using namespace std;

using fvec = std::vector<float>;
using ivec = std::vector<int>;
using fndarray = py::array_t<float>;
using indarray = py::array_t<int>;
using mat = csrblocksparse::CsrBlockSparseMatrix<float, float, int16_t>;
using vec = csrblocksparse::CacheAlignedVector<float>;
using masked_mat = csrblocksparse::MaskedSparseMatrix<float>;

mat create_mat(int h, int w) {
  auto m = masked_mat(w, h, 0.90, 4, 4, 0.0, true);
  auto a = mat(m);
  return a;
}

struct WaveGRU {
  int hidden_dim;
  int repeat_factor;
  mat m;
  vec b;
  vec z, r, hh, zrh;
  vec fco1, fco2;
  vec o1b, o2b;
  vec t;
  vec h;
  vec logits;
  mat o1, o2;
  std::vector<vec> embed;

  WaveGRU(int hidden_dim, int repeat_factor)
      : hidden_dim(hidden_dim),
        repeat_factor(repeat_factor),
        b(3*hidden_dim),
        t(3*hidden_dim),
        zrh(3*hidden_dim),
        z(hidden_dim),
        r(hidden_dim),
        hh(hidden_dim),
        fco1(hidden_dim),
        fco2(256),
        h(hidden_dim),
        o1b(hidden_dim),
        o2b(256),
        logits(256) {
    m = create_mat(hidden_dim, 3*hidden_dim);
    o1 = create_mat(hidden_dim, hidden_dim);
    o2 = create_mat(hidden_dim, 256);
    embed = std::vector<vec>();
    for (int i = 0; i < 256; i++) {
      embed.emplace_back(hidden_dim * 3);
      embed[i].FillRandom();
    }
  }

  void load_embed(fndarray embed_weights) {
    auto a_embed = embed_weights.unchecked<2>();
    for (int i = 0; i < 256; i++) {
      for (int j = 0; j < hidden_dim * 3; j++) embed[i][j] = a_embed(i, j);
    }
  }

  mat load_linear(vec& bias, fndarray w, indarray mask, fndarray b) {
    auto w_ptr = static_cast<float*>(w.request().ptr);
    auto mask_ptr = static_cast<int*>(mask.request().ptr);
    auto rb = b.unchecked<1>();
    // load bias, scale by 1/4
    for (int i = 0; i < rb.shape(0); i++) bias[i] = rb(i) / 4;
    // load weights
    masked_mat mm(w.shape(0), w.shape(1), mask_ptr, w_ptr);
    mat mmm(mm);
    return mmm;
  }

  void load_weights(fndarray m, indarray m_mask, fndarray b,
                    fndarray o1, indarray o1_mask, 
                    fndarray o1b, fndarray o2,
                    indarray o2_mask, fndarray o2b) {
    this->m = load_linear(this->b, m, m_mask, b);
    this->o1 = load_linear(this->o1b, o1, o1_mask, o1b);
    this->o2 = load_linear(this->o2b, o2, o2_mask, o2b);
  }

  std::vector<int> inference(fndarray ft, float temperature) {
    auto rft = ft.unchecked<2>();
    int value = 127;
    std::vector<int> signal(rft.shape(0) * repeat_factor);
    h.FillZero();
    for (int index = 0; index < signal.size(); index++) {
      m.SpMM_bias(h, b, &zrh, false);

      for (int i = 0; i < 3 * hidden_dim; i++) t[i] = embed[value][i] + rft(index / repeat_factor, i);
      for (int i = 0; i < hidden_dim; i++) {
        z[i] = zrh[i] + t[i];
        r[i] = zrh[hidden_dim + i] + t[hidden_dim + i];
      }

      z.Sigmoid();
      r.Sigmoid();

      for (int i = 0; i < hidden_dim; i++) {
        hh[i] = zrh[hidden_dim * 2 + i]  * r[i] + t[hidden_dim * 2 + i];
      }
      hh.Tanh();
      for (int i = 0; i < hidden_dim; i++) {
        h[i] = (1. - z[i]) * h[i] + z[i] * hh[i];
      }
      o1.SpMM_bias(h, o1b, &fco1, true);
      o2.SpMM_bias(fco1, o2b, &fco2, false);
      // auto max_logit = fco2[0];
      // for (int i = 1; i <= 255; ++i) {
      //   max_logit = max(max_logit, fco2[i]);
      // }
      // float total = 0.0;
      // for (int i = 0; i <= 255; ++i) {
      //   logits[i] = csrblocksparse::fast_exp(fco2[i] - max_logit);
      //   total += logits[i];
      // }
      // for (int i = 0; i <= 255; ++i) {
      //   if (logits[i] < total / 1024.0) fco2[i] = -1e9;
      // }
      value = fco2.Sample(temperature);
      signal[index] = value;
    }
    return signal;
  }
};

PYBIND11_MODULE(wavegru_mod, m) {
  py::class_<WaveGRU>(m, "WaveGRU")
      .def(py::init<int, int>())
      .def("load_embed", &WaveGRU::load_embed)
      .def("load_weights", &WaveGRU::load_weights)
      .def("inference", &WaveGRU::inference);
}