Spaces:
Runtime error
Runtime error
File size: 12,256 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sparse_matmul/vector/cache_aligned_vector.h"
#if defined __aarch64__
#include <arm_neon.h>
#endif
#include <stdio.h>
#include <array>
#include <cmath>
#include <random>
#include <tuple>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "sparse_matmul/numerics/test_utils.h"
#include "sparse_matmul/os/coop_threads.h"
namespace csrblocksparse {
const float kExpRelTolerance = .03f; // 3% relative
#ifdef SIGMOID_AS_TANH
const float kSigmoidRelTolerance = .09f; // 9.0% relative
const float kSigmoidAbsTolerance = .003f;
#else
const float kSigmoidRelTolerance = .031f; // 3.1% relative
const float kSigmoidAbsTolerance = .006f;
#endif
const float kTanhRelTolerance = .014f; // 1.4% relative
const float kTanhAbsTolerance = .00525f;
TEST(Transcendentals, CacheAlignedVectorExp) {
const int kTestSize = 1 << 16;
CacheAlignedVector<float> values(kTestSize);
values.FillRandom();
CacheAlignedVector<float> values_ref = values;
values.Exp();
for (int i = 0; i < kTestSize; ++i) {
float exact_val = std::exp(values_ref[i]);
float rel_diff = RelDiff(exact_val, values[i]);
EXPECT_LT(rel_diff, kExpRelTolerance)
<< exact_val << " " << values[i] << " " << values_ref[i];
}
}
TEST(Transcendentals, CacheAlignedVectorSigmoid) {
const int kTestSize = 1 << 16;
CacheAlignedVector<float> values(kTestSize);
values.FillRandom();
CacheAlignedVector<float> values_ref = values;
values.Sigmoid();
for (int i = 0; i < kTestSize; ++i) {
float exact_val = 1. / (1. + std::exp(-values_ref[i]));
float rel_diff = RelDiff(exact_val, values[i]);
EXPECT_LT(rel_diff, kSigmoidRelTolerance)
<< exact_val << " " << values[i] << " " << values_ref[i];
EXPECT_NEAR(values[i], exact_val, kSigmoidAbsTolerance) << values_ref[i];
}
}
TEST(Transcendentals, CacheAlignedVectorTanh) {
const int kTestSize = 1 << 16;
CacheAlignedVector<float> values(kTestSize);
values.FillRandom();
CacheAlignedVector<float> values_ref = values;
values.Tanh();
for (int i = 0; i < kTestSize; ++i) {
float exact_val = std::tanh(values_ref[i]);
float rel_diff = RelDiff(exact_val, values[i]);
EXPECT_LT(rel_diff, kTanhRelTolerance)
<< exact_val << " " << values[i] << " " << values_ref[i];
EXPECT_NEAR(values[i], exact_val, kTanhAbsTolerance) << values_ref[i];
}
}
// Uniformly sample logits and check that the resulting sample choices are
// also (nearly) uniformly distributed.
TEST(Sampling, Random) {
const int kSize = 256;
CacheAlignedVector<float> logits(kSize);
logits.FillZero();
double histogram[kSize] = {};
const int kIterations = 10000;
for (int i = 0; i < kIterations; ++i) {
histogram[logits.Sample()]++;
}
for (int i = 0; i < kSize; ++i) {
// .002 is an empirical bound
EXPECT_GT(histogram[i] / kIterations, 1. / kSize - .002f);
EXPECT_LT(histogram[i] / kIterations, 1. / kSize + .002f);
}
}
// Put (nearly) all the probability mass on one bin and make sure only that bin
// is chosen.
TEST(Sampling, FixedDistribution) {
const int kSize = 256;
CacheAlignedVector<float> logits(kSize);
int histogram[kSize] = {};
const int kIterations = 1000;
const int kIndex = 3;
const int kAllProbabilityMass = 10;
const int kNoProbabilityMass = -10;
for (int i = 0; i < kIterations; ++i) {
for (int i = 1; i <= kSize; ++i) {
logits.data()[i - 1] =
i == (kIndex + 1) ? kAllProbabilityMass : kNoProbabilityMass;
}
histogram[logits.Sample()]++;
}
EXPECT_EQ(histogram[kIndex], 1000);
}
// Put (nearly) all the probability mass on one bin outside the target range,
// and make sure that bin is not chosen.
TEST(ScalarSample, ThreadedMasked) {
const int kSize = 256;
const int mindex = 2;
const int maxdex = 3;
const int kNumThreads = 4;
const int kIterations = 1000;
const int kIndex = 3;
const int kMostProbabilityMass = 3;
const int kLittleProbabilityMass = -3;
CacheAlignedVector<float> logits(kSize);
std::vector<CacheAlignedVector<float>> tmp_vectors;
std::vector<std::minstd_rand> generators(kNumThreads);
for (int i = 0; i < kNumThreads; ++i) {
tmp_vectors.emplace_back(kSize);
}
for (int i = 0; i < kSize; ++i) {
logits.data()[i] =
(i + 1) == (kIndex + 1) ? kMostProbabilityMass : kLittleProbabilityMass;
}
std::vector<std::vector<int>> histograms;
for (int i = 0; i < kNumThreads; ++i) {
histograms.emplace_back(kSize);
}
auto f = [&](csrblocksparse::SpinBarrier* /*barrier*/, int tid) {
for (int i = 0; i < kIterations; ++i) {
histograms[tid][logits.ScalarSample(
1.f, &generators[tid], &tmp_vectors[tid], 0, mindex, maxdex)]++;
}
};
csrblocksparse::LaunchOnThreadsWithBarrier(kNumThreads, f);
// Every thread should generate the exact same set of samples.
for (int i = 0; i < kSize; ++i) {
int val = histograms[0][i];
for (int tid = 1; tid < kNumThreads; ++tid) {
EXPECT_EQ(val, histograms[tid][i]);
}
}
// The most probable sample should be the only one we're sampling.
for (int tid = 0; tid < kNumThreads; ++tid) {
EXPECT_EQ(std::distance(histograms[tid].begin(),
std::max_element(histograms[tid].begin(),
histograms[tid].end())),
mindex);
}
}
TEST(Sampling, Threaded) {
const int kSize = 256;
const int kNumThreads = 4;
const int kIterations = 1000;
const int kIndex = 3;
const int kMostProbabilityMass = 3;
const int kLittleProbabilityMass = -3;
CacheAlignedVector<float> logits(kSize);
std::vector<CacheAlignedVector<float>> tmp_vectors;
std::vector<std::minstd_rand> generators(kNumThreads);
for (int i = 0; i < kNumThreads; ++i) {
tmp_vectors.emplace_back(kSize);
}
for (int i = 0; i < kSize; ++i) {
logits.data()[i] =
(i + 1) == (kIndex + 1) ? kMostProbabilityMass : kLittleProbabilityMass;
}
std::vector<std::vector<int>> histograms;
for (int i = 0; i < kNumThreads; ++i) {
histograms.emplace_back(kSize);
}
auto f = [&](csrblocksparse::SpinBarrier* /*barrier*/, int tid) {
for (int i = 0; i < kIterations; ++i) {
histograms[tid]
[logits.Sample(1.f, &generators[tid], &tmp_vectors[tid])]++;
}
};
csrblocksparse::LaunchOnThreadsWithBarrier(kNumThreads, f);
// Every thread should generate the exact same set of samples.
for (int i = 0; i < kSize; ++i) {
int val = histograms[0][i];
for (int tid = 1; tid < kNumThreads; ++tid) {
EXPECT_EQ(val, histograms[tid][i]);
}
}
// The most probable sample should be the one with the most probability mass.
for (int tid = 0; tid < kNumThreads; ++tid) {
EXPECT_EQ(std::distance(histograms[tid].begin(),
std::max_element(histograms[tid].begin(),
histograms[tid].end())),
kIndex);
}
}
void CreateVectorHelper(
csrblocksparse::FatCacheAlignedVector<float>* fat_vector, int cols,
int rows, std::unique_ptr<csrblocksparse::VectorView<float>>* view) {
*view = absl::make_unique<csrblocksparse::VectorView<float>>(*fat_vector,
cols, rows);
}
void CreateVectorHelper(
csrblocksparse::FatCacheAlignedVector<float>* fat_vector, int cols,
int rows, std::unique_ptr<csrblocksparse::MutableVectorView<float>>* view) {
*view = absl::make_unique<csrblocksparse::MutableVectorView<float>>(
fat_vector, cols, rows);
}
csrblocksparse::FatCacheAlignedVector<float> CreateFatAlignedVector(int rows,
int cols) {
csrblocksparse::FatCacheAlignedVector<float> fat_vector(rows, cols);
// Usage intent of FatCacheAlignedVector is that they are COLUMN MAJOR.
float v = 0;
for (int c = 0; c < cols; ++c) {
for (int r = 0; r < rows; ++r) {
fat_vector.data()[c * rows + r] = v++;
}
}
return fat_vector;
}
template <typename VectorViewType>
void TestFatVectorView() {
const int kRows = 6;
const int kCols = 6;
auto fat_vector = CreateFatAlignedVector(kRows, kCols);
std::unique_ptr<VectorViewType> top;
CreateVectorHelper(&fat_vector, 0, kRows / 2, &top);
std::unique_ptr<VectorViewType> bottom;
CreateVectorHelper(&fat_vector, kRows / 2, kRows / 2, &bottom);
EXPECT_EQ(top->cols(), kCols);
EXPECT_EQ(bottom->cols(), kCols);
EXPECT_EQ(top->rows(), kRows / 2);
EXPECT_EQ(bottom->rows(), kRows / 2);
EXPECT_EQ(top->col_stride(), kRows);
EXPECT_EQ(bottom->col_stride(), kRows);
for (int c = 0; c < kCols; ++c) {
for (int r = 0; r < kRows; ++r) {
if (r < kRows / 2) {
EXPECT_EQ(fat_vector[c * kRows + r],
top->data()[c * top->col_stride() + r]);
} else {
EXPECT_EQ(fat_vector[c * kRows + r],
bottom->data()[c * top->col_stride() + r - kRows / 2]);
}
}
}
}
TEST(FatVector, View) {
TestFatVectorView<csrblocksparse::VectorView<float>>();
}
TEST(FatVector, MutableView) {
TestFatVectorView<csrblocksparse::MutableVectorView<float>>();
}
TEST(FatVector, SliceMutableView) {
const int kRows = 6;
const int kCols = 3;
auto fat_vector = CreateFatAlignedVector(kRows, kCols);
int c = 1;
csrblocksparse::MutableVectorView<float> slice = fat_vector.slice(c);
for (int r = 0; r < kRows; ++r) {
EXPECT_EQ(slice[r], c * kRows + r);
}
}
TEST(FatVector, SliceConstView) {
const int kRows = 6;
const int kCols = 3;
auto fat_vector = CreateFatAlignedVector(kRows, kCols);
int c = 1;
csrblocksparse::VectorView<float> const_slice;
{
// Take a VectorView from a non-const slice.
const_slice = fat_vector.slice(c);
for (int r = 0; r < kRows; ++r) {
EXPECT_EQ(const_slice[r], c * kRows + r);
}
}
{
// Take a VectorView from a const slice.
const auto& const_fat_vector = fat_vector;
const_slice = const_fat_vector.slice(c);
for (int r = 0; r < kRows; ++r) {
EXPECT_EQ(const_slice[r], c * kRows + r);
}
}
}
TEST(View, FromMutableToConst) {
const int kRows = 6;
const int kCols = 3;
auto fat_vector = CreateFatAlignedVector(kRows, kCols);
csrblocksparse::MutableVectorView<float> slice = fat_vector.slice(0);
csrblocksparse::VectorView<float> const_slice(slice);
for (int r = 0; r < kRows; ++r) {
EXPECT_EQ(const_slice[r], r);
}
}
TEST(View, CopyTest) {
const int kRows = 6;
const int kCols = 3;
auto fat_vector = CreateFatAlignedVector(kRows, kCols);
csrblocksparse::MutableVectorView<float> slice = fat_vector.slice(0);
csrblocksparse::MutableVectorView<float> slice2(slice);
for (int r = 0; r < kRows; ++r) {
EXPECT_EQ(slice2[r], r);
}
}
TEST(Vector, CopyNull) {
// Check that we can copy a vector with a null generator without segfault.
CacheAlignedVector<float> foo((CacheAlignedVector<float>()));
// This is here to prevent foo from being optimized out.
CHECK_EQ(foo.size(), 0);
CacheAlignedVector<float> foo_bar = CacheAlignedVector<float>();
CHECK_EQ(foo_bar.size(), 0);
}
TEST(Vector, FromRawPointer) {
std::vector<float> input;
for (int i = 0; i < 5; ++i) {
input.push_back(i * 2);
}
// Calls first constructor.
CacheAlignedVector<float> foo(input.data(), 5);
CHECK_EQ(foo.size(), 5);
EXPECT_THAT(input, testing::ElementsAreArray(foo.data(), 5));
// Calls the second constructor.
CacheAlignedVector<double> foo2(input.data(), 5);
CHECK_EQ(foo2.size(), 5);
EXPECT_THAT(input, testing::ElementsAreArray(foo2.data(), 5));
}
} // namespace csrblocksparse
|