Spaces:
Runtime error
Runtime error
File size: 2,929 Bytes
d1a84ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LYRA_CODEC_SPARSE_MATMUL_NUMERICS_TEST_UTILS_H_
#define LYRA_CODEC_SPARSE_MATMUL_NUMERICS_TEST_UTILS_H_
#include <cmath>
#include <limits>
#include <type_traits>
#include "gtest/gtest.h"
#include "sparse_matmul/numerics/type_utils.h"
namespace csrblocksparse {
// Computes the relative difference between two floating point numbers
// std::abs(b - a) / a. If the a is < 10 * epsilon, then use the absolute
// difference instead of the relative one.
template <typename T>
T RelDiff(T a, T b) {
static_assert(std::is_floating_point<T>::value,
"RelDiff should only be used on floating point types.");
if (std::abs(a) < 600 * std::numeric_limits<T>::epsilon()) {
return std::abs(b - a);
}
return std::abs((b - a) / a);
}
// Compares two CacheAlignedVectors elementwise, checks if each pair passes a
// RelDiff check. The result of RelDiff is scaled by the log of the size of the
// column to account for increasing summation errors as the number of summands
// increases.
template <typename VectorType>
void CheckResult(const VectorType& lhs, const VectorType& rhs, int columns) {
ASSERT_EQ(lhs.size(), rhs.size());
float epsilon =
1.0f /
(1 << (MantissaBitsOf<typename VectorType::value_type>::value - 1));
// if we're summing a large number of values, then we can relax the tolerance
float log_scale = std::max(1.f, logf(columns));
// The tolerance is so large because it is a relative tolerance used to test
// numbers that are close to zero at the limit of the resolution of the
// representation. It would probably be better to focus on an absolute
// tolerance, based on the epsilon above.
const float tolerance = 0.026f;
for (int i = 0; i < lhs.size(); ++i) {
float lhs_value = static_cast<float>(lhs.data()[i]);
float rhs_value = static_cast<float>(rhs.data()[i]);
// If the absolute difference is no more than the epsilon for the
// representation, then it is OK.
if (std::abs(lhs_value - rhs_value) <= epsilon) continue;
float rel_diff = RelDiff(lhs_value, rhs_value) / log_scale;
EXPECT_LT(rel_diff, tolerance) << i % columns << " " << i / columns << " "
<< lhs_value << " " << rhs_value;
}
}
} // namespace csrblocksparse
#endif // LYRA_CODEC_SPARSE_MATMUL_NUMERICS_TEST_UTILS_H_
|