Spaces:
Runtime error
Runtime error
""" | |
Tacotron + stepwise monotonic attention | |
""" | |
import jax | |
import jax.numpy as jnp | |
import pax | |
def conv_block(in_ft, out_ft, kernel_size, activation_fn, use_dropout): | |
""" | |
Conv >> LayerNorm >> activation >> Dropout | |
""" | |
f = pax.Sequential( | |
pax.Conv1D(in_ft, out_ft, kernel_size, with_bias=False), | |
pax.LayerNorm(out_ft, -1, True, True), | |
) | |
if activation_fn is not None: | |
f >>= activation_fn | |
if use_dropout: | |
f >>= pax.Dropout(0.5) | |
return f | |
class HighwayBlock(pax.Module): | |
""" | |
Highway block | |
""" | |
def __init__(self, dim: int) -> None: | |
super().__init__() | |
self.dim = dim | |
self.fc = pax.Linear(dim, 2 * dim) | |
def __call__(self, x: jnp.ndarray) -> jnp.ndarray: | |
t, h = jnp.split(self.fc(x), 2, axis=-1) | |
t = jax.nn.sigmoid(t - 1.0) # bias toward keeping x | |
h = jax.nn.relu(h) | |
x = x * (1.0 - t) + h * t | |
return x | |
class BiGRU(pax.Module): | |
""" | |
Bidirectional GRU | |
""" | |
def __init__(self, dim): | |
super().__init__() | |
self.rnn_fwd = pax.GRU(dim, dim) | |
self.rnn_bwd = pax.GRU(dim, dim) | |
def __call__(self, x, reset_masks): | |
N = x.shape[0] | |
x_fwd = x | |
x_bwd = jnp.flip(x, axis=1) | |
x_fwd_states = self.rnn_fwd.initial_state(N) | |
x_bwd_states = self.rnn_bwd.initial_state(N) | |
x_fwd_states, x_fwd = pax.scan( | |
self.rnn_fwd, x_fwd_states, x_fwd, time_major=False | |
) | |
reset_masks = jnp.flip(reset_masks, axis=1) | |
x_bwd_states0 = x_bwd_states | |
def rnn_reset_core(prev, inputs): | |
x, reset_mask = inputs | |
def reset_state(x0, xt): | |
return jnp.where(reset_mask, x0, xt) | |
state, _ = self.rnn_bwd(prev, x) | |
state = jax.tree_map(reset_state, x_bwd_states0, state) | |
return state, state.hidden | |
x_bwd_states, x_bwd = pax.scan( | |
rnn_reset_core, x_bwd_states, (x_bwd, reset_masks), time_major=False | |
) | |
x_bwd = jnp.flip(x_bwd, axis=1) | |
x = jnp.concatenate((x_fwd, x_bwd), axis=-1) | |
return x | |
class CBHG(pax.Module): | |
""" | |
Conv Bank >> Highway net >> GRU | |
""" | |
def __init__(self, dim): | |
super().__init__() | |
self.convs = [conv_block(dim, dim, i, jax.nn.relu, False) for i in range(1, 17)] | |
self.conv_projection_1 = conv_block(16 * dim, dim, 3, jax.nn.relu, False) | |
self.conv_projection_2 = conv_block(dim, dim, 3, None, False) | |
self.highway = pax.Sequential( | |
HighwayBlock(dim), HighwayBlock(dim), HighwayBlock(dim), HighwayBlock(dim) | |
) | |
self.rnn = BiGRU(dim) | |
def __call__(self, x, x_mask): | |
conv_input = x * x_mask | |
fts = [f(conv_input) for f in self.convs] | |
residual = jnp.concatenate(fts, axis=-1) | |
residual = pax.max_pool(residual, 2, 1, "SAME", -1) | |
residual = self.conv_projection_1(residual * x_mask) | |
residual = self.conv_projection_2(residual * x_mask) | |
x = x + residual | |
x = self.highway(x) | |
x = self.rnn(x * x_mask, reset_masks=1 - x_mask) | |
return x * x_mask | |
class PreNet(pax.Module): | |
""" | |
Linear >> relu >> dropout >> Linear >> relu >> dropout | |
""" | |
def __init__(self, input_dim, hidden_dim, output_dim, always_dropout=True): | |
super().__init__() | |
self.fc1 = pax.Linear(input_dim, hidden_dim) | |
self.fc2 = pax.Linear(hidden_dim, output_dim) | |
self.rng_seq = pax.RngSeq() | |
self.always_dropout = always_dropout | |
def __call__(self, x, k1=None, k2=None): | |
x = self.fc1(x) | |
x = jax.nn.relu(x) | |
if self.always_dropout or self.training: | |
if k1 is None: | |
k1 = self.rng_seq.next_rng_key() | |
x = pax.dropout(k1, 0.5, x) | |
x = self.fc2(x) | |
x = jax.nn.relu(x) | |
if self.always_dropout or self.training: | |
if k2 is None: | |
k2 = self.rng_seq.next_rng_key() | |
x = pax.dropout(k2, 0.5, x) | |
return x | |
class Tacotron(pax.Module): | |
""" | |
Tacotron TTS model. | |
It uses stepwise monotonic attention for robust attention. | |
""" | |
def __init__( | |
self, | |
mel_dim: int, | |
attn_bias, | |
rr, | |
max_rr, | |
mel_min, | |
sigmoid_noise, | |
pad_token, | |
prenet_dim, | |
attn_hidden_dim, | |
attn_rnn_dim, | |
rnn_dim, | |
postnet_dim, | |
text_dim, | |
): | |
""" | |
New Tacotron model | |
Args: | |
mel_dim (int): dimension of log mel-spectrogram features. | |
attn_bias (float): control how "slow" the attention will | |
move forward at initialization. | |
rr (int): the reduction factor. | |
Number of predicted frame at each time step. Default is 2. | |
max_rr (int): max value of rr. | |
mel_min (float): the minimum value of mel features. | |
The <go> frame is filled by `log(mel_min)` values. | |
sigmoid_noise (float): the variance of gaussian noise added | |
to attention scores in training. | |
pad_token (int): the pad value at the end of text sequences. | |
prenet_dim (int): dimension of prenet output. | |
attn_hidden_dim (int): dimension of attention hidden vectors. | |
attn_rnn_dim (int): number of cells in the attention RNN. | |
rnn_dim (int): number of cells in the decoder RNNs. | |
postnet_dim (int): number of features in the postnet convolutions. | |
text_dim (int): dimension of text embedding vectors. | |
""" | |
super().__init__() | |
self.text_dim = text_dim | |
assert rr <= max_rr | |
self.rr = rr | |
self.max_rr = max_rr | |
self.mel_dim = mel_dim | |
self.mel_min = mel_min | |
self.sigmoid_noise = sigmoid_noise | |
self.pad_token = pad_token | |
self.prenet_dim = prenet_dim | |
# encoder submodules | |
self.encoder_embed = pax.Embed(256, text_dim) | |
self.encoder_pre_net = PreNet(text_dim, 256, prenet_dim, always_dropout=True) | |
self.encoder_cbhg = CBHG(prenet_dim) | |
# random key generator | |
self.rng_seq = pax.RngSeq() | |
# pre-net | |
self.decoder_pre_net = PreNet(mel_dim, 256, prenet_dim, always_dropout=True) | |
# decoder submodules | |
self.attn_rnn = pax.LSTM(prenet_dim + prenet_dim * 2, attn_rnn_dim) | |
self.text_key_fc = pax.Linear(prenet_dim * 2, attn_hidden_dim, with_bias=True) | |
self.attn_query_fc = pax.Linear(attn_rnn_dim, attn_hidden_dim, with_bias=False) | |
self.attn_V = pax.Linear(attn_hidden_dim, 1, with_bias=False) | |
self.attn_V_weight_norm = jnp.array(1.0 / jnp.sqrt(attn_hidden_dim)) | |
self.attn_V_bias = jnp.array(attn_bias) | |
self.attn_log = jnp.zeros((1,)) | |
self.decoder_input = pax.Linear(attn_rnn_dim + 2 * prenet_dim, rnn_dim) | |
self.decoder_rnn1 = pax.LSTM(rnn_dim, rnn_dim) | |
self.decoder_rnn2 = pax.LSTM(rnn_dim, rnn_dim) | |
# mel + end-of-sequence token | |
self.output_fc = pax.Linear(rnn_dim, (mel_dim + 1) * max_rr, with_bias=True) | |
# post-net | |
self.post_net = pax.Sequential( | |
conv_block(mel_dim, postnet_dim, 5, jax.nn.tanh, True), | |
conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True), | |
conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True), | |
conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True), | |
conv_block(postnet_dim, mel_dim, 5, None, True), | |
) | |
parameters = pax.parameters_method("attn_V_weight_norm", "attn_V_bias") | |
def encode_text(self, text: jnp.ndarray) -> jnp.ndarray: | |
""" | |
Encode text to a sequence of real vectors | |
""" | |
N, L = text.shape | |
text_mask = (text != self.pad_token)[..., None] | |
x = self.encoder_embed(text) | |
x = self.encoder_pre_net(x) | |
x = self.encoder_cbhg(x, text_mask) | |
return x | |
def go_frame(self, batch_size: int) -> jnp.ndarray: | |
""" | |
return the go frame | |
""" | |
return jnp.ones((batch_size, self.mel_dim)) * jnp.log(self.mel_min) | |
def decoder_initial_state(self, N: int, L: int): | |
""" | |
setup decoder initial state | |
""" | |
attn_context = jnp.zeros((N, self.prenet_dim * 2)) | |
attn_pr = jax.nn.one_hot( | |
jnp.zeros((N,), dtype=jnp.int32), num_classes=L, axis=-1 | |
) | |
attn_state = (self.attn_rnn.initial_state(N), attn_context, attn_pr) | |
decoder_rnn_states = ( | |
self.decoder_rnn1.initial_state(N), | |
self.decoder_rnn2.initial_state(N), | |
) | |
return attn_state, decoder_rnn_states | |
def monotonic_attention(self, prev_state, inputs, envs): | |
""" | |
Stepwise monotonic attention | |
""" | |
attn_rnn_state, attn_context, prev_attn_pr = prev_state | |
x, attn_rng_key = inputs | |
text, text_key = envs | |
attn_rnn_input = jnp.concatenate((x, attn_context), axis=-1) | |
attn_rnn_state, attn_rnn_output = self.attn_rnn(attn_rnn_state, attn_rnn_input) | |
attn_query_input = attn_rnn_output | |
attn_query = self.attn_query_fc(attn_query_input) | |
attn_hidden = jnp.tanh(attn_query[:, None, :] + text_key) | |
score = self.attn_V(attn_hidden) | |
score = jnp.squeeze(score, axis=-1) | |
weight_norm = jnp.linalg.norm(self.attn_V.weight) | |
score = score * (self.attn_V_weight_norm / weight_norm) | |
score = score + self.attn_V_bias | |
noise = jax.random.normal(attn_rng_key, score.shape) * self.sigmoid_noise | |
pr_stay = jax.nn.sigmoid(score + noise) | |
pr_move = 1.0 - pr_stay | |
pr_new_location = pr_move * prev_attn_pr | |
pr_new_location = jnp.pad( | |
pr_new_location[:, :-1], ((0, 0), (1, 0)), constant_values=0 | |
) | |
attn_pr = pr_stay * prev_attn_pr + pr_new_location | |
attn_context = jnp.einsum("NL,NLD->ND", attn_pr, text) | |
new_state = (attn_rnn_state, attn_context, attn_pr) | |
return new_state, attn_rnn_output | |
def zoneout_lstm(self, lstm_core, rng_key, zoneout_pr=0.1): | |
""" | |
Return a zoneout lstm core. | |
It will zoneout the new hidden states and keep the new cell states unchanged. | |
""" | |
def core(state, x): | |
new_state, _ = lstm_core(state, x) | |
h_old = state.hidden | |
h_new = new_state.hidden | |
mask = jax.random.bernoulli(rng_key, zoneout_pr, h_old.shape) | |
h_new = h_old * mask + h_new * (1.0 - mask) | |
return pax.LSTMState(h_new, new_state.cell), h_new | |
return core | |
def decoder_step( | |
self, | |
attn_state, | |
decoder_rnn_states, | |
rng_key, | |
mel, | |
text, | |
text_key, | |
call_pre_net=False, | |
): | |
""" | |
One decoder step | |
""" | |
if call_pre_net: | |
k1, k2, zk1, zk2, rng_key, rng_key_next = jax.random.split(rng_key, 6) | |
mel = self.decoder_pre_net(mel, k1, k2) | |
else: | |
zk1, zk2, rng_key, rng_key_next = jax.random.split(rng_key, 4) | |
attn_inputs = (mel, rng_key) | |
attn_envs = (text, text_key) | |
attn_state, attn_rnn_output = self.monotonic_attention( | |
attn_state, attn_inputs, attn_envs | |
) | |
(_, attn_context, attn_pr) = attn_state | |
(decoder_rnn_state1, decoder_rnn_state2) = decoder_rnn_states | |
decoder_rnn1_input = jnp.concatenate((attn_rnn_output, attn_context), axis=-1) | |
decoder_rnn1_input = self.decoder_input(decoder_rnn1_input) | |
decoder_rnn1 = self.zoneout_lstm(self.decoder_rnn1, zk1) | |
decoder_rnn_state1, decoder_rnn_output1 = decoder_rnn1( | |
decoder_rnn_state1, decoder_rnn1_input | |
) | |
decoder_rnn2_input = decoder_rnn1_input + decoder_rnn_output1 | |
decoder_rnn2 = self.zoneout_lstm(self.decoder_rnn2, zk2) | |
decoder_rnn_state2, decoder_rnn_output2 = decoder_rnn2( | |
decoder_rnn_state2, decoder_rnn2_input | |
) | |
x = decoder_rnn1_input + decoder_rnn_output1 + decoder_rnn_output2 | |
decoder_rnn_states = (decoder_rnn_state1, decoder_rnn_state2) | |
return attn_state, decoder_rnn_states, rng_key_next, x, attn_pr[0] | |
def inference_step( | |
self, attn_state, decoder_rnn_states, rng_key, mel, text, text_key | |
): | |
"""one inference step""" | |
attn_state, decoder_rnn_states, rng_key, x, _ = self.decoder_step( | |
attn_state, | |
decoder_rnn_states, | |
rng_key, | |
mel, | |
text, | |
text_key, | |
call_pre_net=True, | |
) | |
x = self.output_fc(x) | |
N, D2 = x.shape | |
x = jnp.reshape(x, (N, self.max_rr, D2 // self.max_rr)) | |
x = x[:, : self.rr, :] | |
x = jnp.reshape(x, (N, self.rr, -1)) | |
mel = x[..., :-1] | |
mel = jnp.clip(mel, a_min=None, a_max=1.6) | |
eos = x[..., -1] | |
return attn_state, decoder_rnn_states, rng_key, (mel, eos) | |
def inference(self, text, seed=42, max_len=1000): | |
""" | |
text to mel | |
""" | |
text = self.encode_text(text) | |
text_key = self.text_key_fc(text) | |
N, L, D = text.shape | |
mel = self.go_frame(N) | |
attn_state, decoder_rnn_states = self.decoder_initial_state(N, L) | |
rng_key = jax.random.PRNGKey(seed) | |
mels = [] | |
count = 0 | |
while True: | |
count = count + 1 | |
attn_state, decoder_rnn_states, rng_key, (mel, eos) = self.inference_step( | |
attn_state, decoder_rnn_states, rng_key, mel, text, text_key | |
) | |
mels.append(mel) | |
if eos[0, -1].item() > 0 or count > max_len: | |
break | |
mel = mel[:, -1, :] | |
mels = jnp.concatenate(mels, axis=1) | |
mel = mel + self.post_net(mel) | |
return mels | |
def decode(self, mel, text): | |
""" | |
Attention mechanism + Decoder | |
""" | |
text_key = self.text_key_fc(text) | |
def scan_fn(prev_states, inputs): | |
attn_state, decoder_rnn_states = prev_states | |
x, rng_key = inputs | |
attn_state, decoder_rnn_states, _, output, attn_pr = self.decoder_step( | |
attn_state, decoder_rnn_states, rng_key, x, text, text_key | |
) | |
states = (attn_state, decoder_rnn_states) | |
return states, (output, attn_pr) | |
N, L, D = text.shape | |
decoder_states = self.decoder_initial_state(N, L) | |
rng_keys = self.rng_seq.next_rng_key(mel.shape[1]) | |
rng_keys = jnp.stack(rng_keys, axis=1) | |
decoder_states, (x, attn_log) = pax.scan( | |
scan_fn, | |
decoder_states, | |
(mel, rng_keys), | |
time_major=False, | |
) | |
self.attn_log = attn_log | |
del decoder_states | |
x = self.output_fc(x) | |
N, T2, D2 = x.shape | |
x = jnp.reshape(x, (N, T2, self.max_rr, D2 // self.max_rr)) | |
x = x[:, :, : self.rr, :] | |
x = jnp.reshape(x, (N, T2 * self.rr, -1)) | |
mel = x[..., :-1] | |
eos = x[..., -1] | |
return mel, eos | |
def __call__(self, mel: jnp.ndarray, text: jnp.ndarray): | |
text = self.encode_text(text) | |
mel = self.decoder_pre_net(mel) | |
mel, eos = self.decode(mel, text) | |
return mel, mel + self.post_net(mel), eos | |