import numpy as np import sys from wavegru_mod import WaveGRU def extract_weight_mask(net): data = {} data["embed_weight"] = net.embed.weight data["gru_xh_zr_weight"] = net.rnn.xh_zr_fc.weight data["gru_xh_zr_mask"] = net.gru_pruner.xh_zr_fc_mask data["gru_xh_zr_bias"] = net.rnn.xh_zr_fc.bias data["gru_xh_h_weight"] = net.rnn.xh_h_fc.weight data["gru_xh_h_mask"] = net.gru_pruner.xh_h_fc_mask data["gru_xh_h_bias"] = net.rnn.xh_h_fc.bias data["o1_weight"] = net.o1.weight data["o1_mask"] = net.o1_pruner.mask data["o1_bias"] = net.o1.bias data["o2_weight"] = net.o2.weight data["o2_mask"] = net.o2_pruner.mask data["o2_bias"] = net.o2.bias return data def load_wavegru_cpp(data): embed = data["embed_weight"] embed_dim = embed.shape[1] rnn_dim = data["gru_xh_h_bias"].shape[0] input_dim = data["gru_xh_zr_weight"].shape[1] - rnn_dim net = WaveGRU(input_dim, embed_dim, rnn_dim) net.load_embed(embed) dim = embed_dim + input_dim + rnn_dim z, r = np.split(data["gru_xh_zr_weight"].T, 2, axis=0) h = data["gru_xh_h_weight"].T z = np.ascontiguousarray(z) r = np.ascontiguousarray(r) h = np.ascontiguousarray(h) b1, b2 = np.split(data["gru_xh_zr_bias"], 2) b3 = data["gru_xh_h_bias"] m1, m2, m3 = z, r, h mask_z, mask_r = np.split(data["gru_xh_zr_mask"].T, 2, axis=0) mask_h = data["gru_xh_h_mask"].T mask_z = np.ascontiguousarray(mask_z) mask_r = np.ascontiguousarray(mask_r) mask_h = np.ascontiguousarray(mask_h) mask1, mask2, mask3 = mask_z, mask_r, mask_h o1 = np.ascontiguousarray(data["o1_weight"].T) masko1 = np.ascontiguousarray(data["o1_mask"].T) o1b = data["o1_bias"] o2 = np.ascontiguousarray(data["o2_weight"].T) masko2 = np.ascontiguousarray(data["o2_mask"].T) o2b = data["o2_bias"] net.load_weights( m1, mask1, b1, m2, mask2, b2, m3, mask3, b3, o1, masko1, o1b, o2, masko2, o2b, ) return net