Alexandre-Numind commited on
Commit
7a28cee
·
verified ·
1 Parent(s): 1ef9251

Update ml.py

Browse files
Files changed (1) hide show
  1. ml.py +34 -34
ml.py CHANGED
@@ -1,34 +1,34 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
2
- import torch
3
- import json
4
- import json
5
- import re
6
- import numpy as np
7
-
8
-
9
- def create_prompt(text, template, examples):
10
- template = json.dumps(json.loads(template),indent = 4)
11
-
12
- prompt = "<|input|>\n### Template:\n"+template+"\n"
13
-
14
- if examples[0]:
15
- example1 = json.dumps(json.loads(examples[0]),indent = 4)
16
- prompt+= "### Example:\n"+example1+"\n"
17
- if examples[1]:
18
- example2 = json.dumps(json.loads(examples[1]),indent = 4)
19
- prompt+= "### Example:\n"+example1+"\n"
20
- if examples[2]:
21
- example3 = json.dumps(json.loads(examples[1]),indent = 4)
22
- prompt+= "### Example:\n"+example3+"\n"
23
-
24
- prompt += "### Text:\n"+text+'''\n<|output|>'''
25
-
26
- return prompt
27
-
28
-
29
- def generate_answer_short(prompt,model, tokenizer):
30
- model_input = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=3000).to("cuda")
31
- with torch.no_grad():
32
- gen = tokenizer.decode(model.generate(**model_input, max_new_tokens=1500)[0], skip_special_tokens=True)
33
- print(gen.split("<|output|>")[1].split("<|end-output|>")[0])
34
- return gen.split("<|output|>")[1].split("<|end-output|>")[0]
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
2
+ import torch
3
+ import json
4
+ import json
5
+ import re
6
+ import numpy as np
7
+
8
+
9
+ def create_prompt(text, template, examples):
10
+ template = json.dumps(json.loads(template),indent = 4)
11
+
12
+ prompt = "<|input|>\n### Template:\n"+template+"\n"
13
+
14
+ if examples[0]:
15
+ example1 = json.dumps(json.loads(examples[0]),indent = 4)
16
+ prompt+= "### Example:\n"+example1+"\n"
17
+ if examples[1]:
18
+ example2 = json.dumps(json.loads(examples[1]),indent = 4)
19
+ prompt+= "### Example:\n"+example1+"\n"
20
+ if examples[2]:
21
+ example3 = json.dumps(json.loads(examples[1]),indent = 4)
22
+ prompt+= "### Example:\n"+example3+"\n"
23
+
24
+ prompt += "### Text:\n"+text+'''\n<|output|>'''
25
+
26
+ return prompt
27
+
28
+
29
+ def generate_answer_short(prompt,model, tokenizer):
30
+ model_input = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=3000).to("cuda")
31
+ with torch.no_grad():
32
+ gen = tokenizer.decode(model.generate(**model_input, max_new_tokens=1500)[0], skip_special_tokens=True)
33
+ print(gen.split("<|output|>")[1])
34
+ return gen.split("<|output|>")[1].split("<|end-output|>")[0]