File size: 9,437 Bytes
e0f6273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f16d888
e0f6273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715ead
e0f6273
 
 
 
 
 
 
1715ead
 
 
 
 
 
 
 
 
e0f6273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import random

import gradio as gr
import numpy as np
import spaces
import torch
from einops import rearrange
from huggingface_hub import login
from peft import LoraConfig
from PIL import Image
from pipelines.flux_pipeline.pipeline import SynCDFluxPipeline
from pipelines.flux_pipeline.transformer import FluxTransformer2DModelWithMasking

HF_TOKEN = os.getenv('HF_TOKEN')
login(token=HF_TOKEN)
torch_dtype = torch.bfloat16
transformer = FluxTransformer2DModelWithMasking.from_pretrained(
            'black-forest-labs/FLUX.1-dev',
            subfolder='transformer',
            torch_dtype=torch_dtype
        )
pipeline = SynCDFluxPipeline.from_pretrained('black-forest-labs/FLUX.1-dev', transformer=transformer, torch_dtype=torch_dtype)
for name, attn_proc in pipeline.transformer.attn_processors.items():
    attn_proc.name = name

target_modules=[
                "to_k",
                "to_q",
                "to_v",
                "add_k_proj",
                "add_q_proj",
                "add_v_proj",
                "to_out.0",
                "to_add_out",
                "ff.net.0.proj",
                "ff.net.2",
                "ff_context.net.0.proj",
                "ff_context.net.2",
                "proj_mlp",
                "proj_out",
                ]
lora_rank = 32
lora_config = LoraConfig(
    r=lora_rank,
    lora_alpha=lora_rank,
    init_lora_weights="gaussian",
    target_modules=target_modules,
)
pipeline.transformer.add_adapter(lora_config)
finetuned_path = torch.load('models/pytorch_model.bin', map_location='cpu')
transformer_dict = {}
for key,value in finetuned_path.items():
    if 'transformer.base_model.model.' in key:
        transformer_dict[key.replace('transformer.base_model.model.', '')] = value 
pipeline.transformer.load_state_dict(transformer_dict, strict=False)
pipeline.to('cuda')
pipeline.enable_vae_slicing()
pipeline.enable_vae_tiling()

@torch.no_grad()
def decode(latents, pipeline):
    latents = latents / pipeline.vae.config.scaling_factor
    image = pipeline.vae.decode(latents, return_dict=False)[0]
    return image


@torch.no_grad()
def encode_target_images(images, pipeline):
    latents = pipeline.vae.encode(images).latent_dist.sample()
    latents = latents * pipeline.vae.config.scaling_factor
    return latents


@spaces.GPU(duration=120)
def generate_image(text, img1, img2, img3, guidance_scale, inference_steps, seed, rigid_object, enable_cpu_offload=False):
    if enable_cpu_offload:
        pipeline.enable_sequential_cpu_offload()
    input_images = [img1, img2, img3]
    # Delete None
    input_images = [img for img in input_images if img is not None]
    if len(input_images) == 0:
        return "Please upload at least one image"
    numref = len(input_images) + 1
    images = torch.cat([2. * torch.from_numpy(np.array(Image.open(img).convert('RGB').resize((512, 512)))).permute(2, 0, 1).unsqueeze(0).to(torch_dtype)/255. -1. for img in input_images])
    images = images.to(pipeline.device)
    latents = encode_target_images(images, pipeline)
    latents = torch.cat([torch.zeros_like(latents[:1]), latents], dim=0)
    masklatent = torch.zeros_like(latents)
    masklatent[:1] = 1.
    latents = rearrange(latents, "(b n) c h w -> b c h (n w)", n=numref)
    masklatent = rearrange(masklatent, "(b n) c h w -> b c h (n w)", n=numref)
    B, C, H, W = latents.shape
    latents = pipeline._pack_latents(latents, B, C, H, W)
    masklatent = pipeline._pack_latents(masklatent.expand(-1, C, -1, -1) ,B, C, H, W)
    output = pipeline(
        text,
        latents_ref=latents,
        latents_mask=masklatent,
        guidance_scale=guidance_scale,
        num_inference_steps=inference_steps,
        height=512,
        width=numref * 512,
        generator = torch.Generator(device="cpu").manual_seed(seed),
        joint_attention_kwargs={'shared_attn': True, 'num': numref},
        return_dict=False,
    )[0][0]
    output = rearrange(output, "b c h (n w) -> (b n) c h w", n=numref)[::numref]
    img = Image.fromarray( (( torch.clip(output[0].float(), -1., 1.).permute(1,2,0).cpu().numpy()*0.5+0.5)*255).astype(np.uint8) )
    return img



def get_example():
    case = [
        [
            "An action figure on top of a mountain. Sunset in the background. Realistic shot.",
            "./imgs/test_cases/action_figure/0.jpg",
            "./imgs/test_cases/action_figure/1.jpg",
            "./imgs/test_cases/action_figure/2.jpg",
            3.5,
            42,
            True,
        ],
        [
            "A penguin plushie wearing pink sunglasses is lounging on a beach. Realistic shot.",
            "./imgs/test_cases/penguin/0.jpg",
            "./imgs/test_cases/penguin/1.jpg",
            "./imgs/test_cases/penguin/2.jpg",
            3.5,
            42,
            True,
        ],
        [
            "A toy on a beach. Waves in the background. Realistic shot.",
            "./imgs/test_cases/rc_car/02.jpg",
            "./imgs/test_cases/rc_car/03.jpg",
            "./imgs/test_cases/rc_car/04.jpg",
            3.5,
            42,
            True,
        ],
    ]
    return case

def run_for_examples(text, img1, img2, img3, guidance_scale, seed, rigid_object, enable_cpu_offload=False):    
    inference_steps = 30
    
    return generate_image(
        text, img1, img2, img3, guidance_scale, inference_steps, seed, rigid_object, enable_cpu_offload
    )

description = """
Synthetic Customization Dataset (SynCD) consists of multiple images of the same object in different contexts. We achieve it by promoting similar object identity using either explicit 3D object assets or, more implicitly, using masked shared attention across different views while generating images. Given this training data, we train a new encoder-based model for the task, which can successfully generate new compositions of a reference object using text prompts. You can download our dataset [here](https://huggingface.co/datasets/nupurkmr9/syncd). 

Our model supports multiple input images of the same object as references. You can upload up to 3 images, with better results on 3 images vs 1 image.

**HF Spaces often encounter errors due to quota limitations, so recommend to run it locally.**
"""

article = """
---
**Citation** 
<br> 
If you find this repository useful, please consider giving a star ⭐ and a citation
```
@article{kumari2025syncd,
        title={Generating Multi-Image Synthetic Data for Text-to-Image Customization},
        author={Kumari, Nupur and Yin, Xi and Zhu, Jun-Yan and Misra, Ishan and Azadi, Samaneh},
        journal={ArXiv},
        year={2025}
      }
```
**Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out via email.

**Acknowledgement**
<br>
This space was modified from [OmniGen](https://huggingface.co/spaces/Shitao/OmniGen) space.
"""


# Gradio 
with gr.Blocks() as demo:
    gr.Markdown("# SynCD: Generating Multi-Image Synthetic Data for Text-to-Image Customization [[paper](https://arxiv.org/abs/2502.01720)] [[code](https://github.com/nupurkmr9/syncd)]")
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            # text prompt
            prompt_input = gr.Textbox(
                label="Enter your prompt, more descriptive prompt will lead to better results", placeholder="Type your prompt here..."
            )

            with gr.Row(equal_height=True):
                # input images
                image_input_1 = gr.Image(label="img1", type="filepath")
                image_input_2 = gr.Image(label="img2", type="filepath")
                image_input_3 = gr.Image(label="img3", type="filepath")

            guidance_scale_input = gr.Slider(
                label="Guidance Scale", minimum=1.0, maximum=5.0, value=3.5, step=0.1
            )

            num_inference_steps = gr.Slider(
                label="Inference Steps", minimum=1, maximum=100, value=30, step=1
            )

            seed_input = gr.Slider(
                label="Seed", minimum=0, maximum=2147483647, value=42, step=1
            )

            rigid_object = gr.Checkbox(
                label="rigid_object", info="Whether its a rigid object or a deformable object like pet animals, wearable etc.", value=True,
            )
            enable_cpu_offload = gr.Checkbox(
                label="Enable CPU Offload", info="Enable CPU Offload to avoid memory issues", value=False,
            )

            # generate
            generate_button = gr.Button("Generate Image")
            

        with gr.Column():
            # output image
            output_image = gr.Image(label="Output Image")

    # click
    generate_button.click(
        generate_image,
        inputs=[
            prompt_input,
            image_input_1,
            image_input_2,
            image_input_3,
            guidance_scale_input,
            num_inference_steps,
            seed_input,
            rigid_object,   
            enable_cpu_offload,
        ],
        outputs=output_image,
    )

    gr.Examples(
        examples=get_example(),
        fn=run_for_examples,
        inputs=[
            prompt_input,
            image_input_1,
            image_input_2,
            image_input_3,
            guidance_scale_input,
            seed_input,
            rigid_object,
        ],
        outputs=output_image,
    )

    gr.Markdown(article)

# launch
demo.launch()