Spaces:
Running
on
Zero
Running
on
Zero
# https://github.com/bghira/SimpleTuner/blob/d0b5f37913a80aabdb0cac893937072dfa3e6a4b/helpers/models/flux/transformer.py#L404 | |
# Copyright 2024 Stability AI, The HuggingFace Team, The InstantX Team, and Terminus Research Group. All rights reserved. | |
# | |
# Originally licensed under the Apache License, Version 2.0 (the "License"); | |
# Updated to "Affero GENERAL PUBLIC LICENSE Version 3, 19 November 2007" via extensive updates to attn_mask usage. | |
import math | |
from contextlib import contextmanager | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from peft.tuners.lora.layer import LoraLayer | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
from diffusers.models.attention import FeedForward | |
from diffusers.models.attention_processor import Attention, AttentionProcessor | |
from diffusers.models.embeddings import ( | |
CombinedTimestepGuidanceTextProjEmbeddings, | |
CombinedTimestepTextProjEmbeddings, | |
FluxPosEmbed, | |
) | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import ( | |
AdaLayerNormContinuous, | |
AdaLayerNormZero, | |
AdaLayerNormZeroSingle, | |
) | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
is_torch_version, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def log_scale_masking(value, min_value=1, max_value=10): | |
# Convert the value into a positive domain for the logarithmic function | |
normalized_value = 1*value | |
# Apply logarithmic scaling | |
# log_scaled_value = 1-np.exp(-normalized_value) | |
log_scaled_value = 2.0* math.log(normalized_value+1, 2) / math.log(2, 2) # np.log1p(x) = log(1 + x) | |
# print(log_scaled_value) | |
# Rescale to original range | |
scaled_value = log_scaled_value * (max_value - min_value) + min_value | |
return min(max_value, int(scaled_value)) | |
class FluxAttnProcessor2_0: | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError( | |
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
) | |
self.name = None | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
shared_attn: bool=False, num=2, | |
mode="a", | |
ref_dict: dict = None, | |
single: bool=False, | |
scale: float = 1.0, | |
timestep: float = 0, | |
val: bool = False, | |
) -> torch.FloatTensor: | |
if mode == 'w': # and single: | |
ref_dict[self.name] = hidden_states.detach() | |
batch_size, _, _ = ( | |
hidden_states.shape | |
if encoder_hidden_states is None | |
else encoder_hidden_states.shape | |
) | |
end_of_hidden_states = hidden_states.shape[1] | |
text_seq = 512 | |
mask = None | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
if encoder_hidden_states is not None: | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
query = apply_rotary_emb(query, image_rotary_emb) | |
key = apply_rotary_emb(key, image_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask if timestep < 1. else None) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if encoder_hidden_states is not None: | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] : ], | |
) | |
hidden_states = hidden_states[:, :end_of_hidden_states] | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
else: | |
return hidden_states[:, :end_of_hidden_states] | |
def expand_flux_attention_mask( | |
hidden_states: torch.Tensor, | |
attn_mask: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Expand a mask so that the image is included. | |
""" | |
bsz = attn_mask.shape[0] | |
assert bsz == hidden_states.shape[0] | |
residual_seq_len = hidden_states.shape[1] | |
mask_seq_len = attn_mask.shape[1] | |
expanded_mask = torch.ones(bsz, residual_seq_len) | |
expanded_mask[:, :mask_seq_len] = attn_mask | |
return expanded_mask | |
class FluxSingleTransformerBlock(nn.Module): | |
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): | |
super().__init__() | |
self.mlp_hidden_dim = int(dim * mlp_ratio) | |
self.norm = AdaLayerNormZeroSingle(dim) | |
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) | |
self.act_mlp = nn.GELU(approximate="tanh") | |
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) | |
processor = FluxAttnProcessor2_0() | |
# processor = FluxSingleAttnProcessor3_0() | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
bias=True, | |
processor=processor, | |
qk_norm="rms_norm", | |
eps=1e-6, | |
pre_only=True, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
): | |
residual = hidden_states | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
**joint_attention_kwargs, | |
single=True, | |
) | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
gate = gate.unsqueeze(1) | |
hidden_states = gate * self.proj_out(hidden_states) | |
hidden_states = residual + hidden_states | |
return hidden_states | |
class FluxTransformerBlock(nn.Module): | |
def __init__( | |
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6 | |
): | |
super().__init__() | |
self.norm1 = AdaLayerNormZero(dim) | |
self.norm1_context = AdaLayerNormZero(dim) | |
if hasattr(F, "scaled_dot_product_attention"): | |
processor = FluxAttnProcessor2_0() | |
else: | |
raise ValueError( | |
"The current PyTorch version does not support the `scaled_dot_product_attention` function." | |
) | |
self.attn = Attention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=dim, | |
context_pre_only=False, | |
bias=True, | |
processor=processor, | |
qk_norm=qk_norm, | |
eps=eps, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward( | |
dim=dim, dim_out=dim, activation_fn="gelu-approximate" | |
) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
image_rotary_emb=None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None | |
): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (self.norm1_context(encoder_hidden_states, emb=temb)) | |
# Attention. | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
**joint_attention_kwargs, | |
single=False, | |
) | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = hidden_states + attn_output | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = (norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]) | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = hidden_states + ff_output | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = ( | |
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) | |
+ c_shift_mlp[:, None] | |
) | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = ( | |
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
) | |
return encoder_hidden_states, hidden_states | |
def set_adapter_scale(model, alpha): | |
original_scaling = {} | |
for module in model.modules(): | |
if isinstance(module, LoraLayer): | |
original_scaling[module] = module.scaling.copy() | |
module.scaling = {k: v * alpha for k, v in module.scaling.items()} | |
# check whether scaling is prohibited on model | |
# the original scaling dictionary should be empty | |
# if there were no lora layers | |
if not original_scaling: | |
raise ValueError("scaling is only supported for models with `LoraLayer`s") | |
try: | |
yield | |
finally: | |
# restore original scaling values after exiting the context | |
for module, scaling in original_scaling.items(): | |
module.scaling = scaling | |
class FluxTransformer2DModelWithMasking( | |
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin | |
): | |
""" | |
The Transformer model introduced in Flux. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Parameters: | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. | |
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
guidance_embeds: bool = False, | |
axes_dims_rope: Tuple[int] = (16, 56, 56), | |
## | |
): | |
super().__init__() | |
self.out_channels = in_channels | |
self.inner_dim = ( | |
self.config.num_attention_heads * self.config.attention_head_dim | |
) | |
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) | |
text_time_guidance_cls = ( | |
CombinedTimestepGuidanceTextProjEmbeddings | |
if guidance_embeds | |
else CombinedTimestepTextProjEmbeddings | |
) | |
self.time_text_embed = text_time_guidance_cls( | |
embedding_dim=self.inner_dim, | |
pooled_projection_dim=self.config.pooled_projection_dim, | |
) | |
self.context_embedder = nn.Linear( | |
self.config.joint_attention_dim, self.inner_dim | |
) | |
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_single_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous( | |
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 | |
) | |
self.proj_out = nn.Linear( | |
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True | |
) | |
self.gradient_checkpointing = False | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModelWithMasking`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if ( | |
joint_attention_kwargs is not None | |
and joint_attention_kwargs.get("scale", None) is not None | |
): | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) * 1000 | |
else: | |
guidance = None | |
temb = ( | |
self.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if txt_ids.ndim == 3: | |
txt_ids = txt_ids[0] | |
if img_ids.ndim == 3: | |
img_ids = img_ids[0] | |
# txt_ids = torch.zeros((1024,3)).to(txt_ids.device, dtype=txt_ids.dtype) | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
image_rotary_emb = self.pos_embed(ids) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
encoder_hidden_states, hidden_states = ( | |
torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
joint_attention_kwargs, | |
**ckpt_kwargs, | |
) | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# Flux places the text tokens in front of the image tokens in the | |
# sequence. | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = ( | |
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
joint_attention_kwargs, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
hidden_states = self.norm_out(hidden_states, temb) | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
if __name__ == "__main__": | |
dtype = torch.bfloat16 | |
bsz = 2 | |
img = torch.rand((bsz, 16, 64, 64)).to("cuda", dtype=dtype) | |
timestep = torch.tensor([0.5, 0.5]).to("cuda", dtype=torch.float32) | |
pooled = torch.rand(bsz, 768).to("cuda", dtype=dtype) | |
text = torch.rand((bsz, 512, 4096)).to("cuda", dtype=dtype) | |
attn_mask = torch.tensor([[1.0] * 384 + [0.0] * 128] * bsz).to( | |
"cuda", dtype=dtype | |
) # Last 128 positions are masked | |
def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
latents = latents.view( | |
batch_size, num_channels_latents, height // 2, 2, width // 2, 2 | |
) | |
latents = latents.permute(0, 2, 4, 1, 3, 5) | |
latents = latents.reshape( | |
batch_size, (height // 2) * (width // 2), num_channels_latents * 4 | |
) | |
return latents | |
def _prepare_latent_image_ids( | |
batch_size, height, width, device="cuda", dtype=dtype | |
): | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = ( | |
latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
) | |
latent_image_ids[..., 2] = ( | |
latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
) | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = ( | |
latent_image_ids.shape | |
) | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
latent_image_ids = latent_image_ids.reshape( | |
batch_size, | |
latent_image_id_height * latent_image_id_width, | |
latent_image_id_channels, | |
) | |
return latent_image_ids.to(device=device, dtype=dtype) | |
txt_ids = torch.zeros(bsz, text.shape[1], 3).to(device="cuda", dtype=dtype) | |
vae_scale_factor = 16 | |
height = 2 * (int(512) // vae_scale_factor) | |
width = 2 * (int(512) // vae_scale_factor) | |
img_ids = _prepare_latent_image_ids(bsz, height, width) | |
img = _pack_latents(img, img.shape[0], 16, height, width) | |
# Gotta go fast | |
transformer = FluxTransformer2DModelWithMasking.from_config( | |
{ | |
"attention_head_dim": 128, | |
"guidance_embeds": True, | |
"in_channels": 64, | |
"joint_attention_dim": 4096, | |
"num_attention_heads": 24, | |
"num_layers": 4, | |
"num_single_layers": 8, | |
"patch_size": 1, | |
"pooled_projection_dim": 768, | |
} | |
).to("cuda", dtype=dtype) | |
guidance = torch.tensor([2.0], device="cuda") | |
guidance = guidance.expand(bsz) | |
with torch.no_grad(): | |
no_mask = transformer( | |
img, | |
encoder_hidden_states=text, | |
pooled_projections=pooled, | |
timestep=timestep, | |
img_ids=img_ids, | |
txt_ids=txt_ids, | |
guidance=guidance, | |
) | |
mask = transformer( | |
img, | |
encoder_hidden_states=text, | |
pooled_projections=pooled, | |
timestep=timestep, | |
img_ids=img_ids, | |
txt_ids=txt_ids, | |
guidance=guidance, | |
attention_mask=attn_mask, | |
) | |
assert torch.allclose(no_mask.sample, mask.sample) is False | |
print("Attention masking test ran OK. Differences in output were detected.") |