SynCD / pipelines /flux_pipeline /transformer.py
Nupur Kumari
Initial commit
e0f6273
# https://github.com/bghira/SimpleTuner/blob/d0b5f37913a80aabdb0cac893937072dfa3e6a4b/helpers/models/flux/transformer.py#L404
# Copyright 2024 Stability AI, The HuggingFace Team, The InstantX Team, and Terminus Research Group. All rights reserved.
#
# Originally licensed under the Apache License, Version 2.0 (the "License");
# Updated to "Affero GENERAL PUBLIC LICENSE Version 3, 19 November 2007" via extensive updates to attn_mask usage.
import math
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from peft.tuners.lora.layer import LoraLayer
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (
CombinedTimestepGuidanceTextProjEmbeddings,
CombinedTimestepTextProjEmbeddings,
FluxPosEmbed,
)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (
AdaLayerNormContinuous,
AdaLayerNormZero,
AdaLayerNormZeroSingle,
)
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_version,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import maybe_allow_in_graph
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def log_scale_masking(value, min_value=1, max_value=10):
# Convert the value into a positive domain for the logarithmic function
normalized_value = 1*value
# Apply logarithmic scaling
# log_scaled_value = 1-np.exp(-normalized_value)
log_scaled_value = 2.0* math.log(normalized_value+1, 2) / math.log(2, 2) # np.log1p(x) = log(1 + x)
# print(log_scaled_value)
# Rescale to original range
scaled_value = log_scaled_value * (max_value - min_value) + min_value
return min(max_value, int(scaled_value))
class FluxAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.name = None
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
shared_attn: bool=False, num=2,
mode="a",
ref_dict: dict = None,
single: bool=False,
scale: float = 1.0,
timestep: float = 0,
val: bool = False,
) -> torch.FloatTensor:
if mode == 'w': # and single:
ref_dict[self.name] = hidden_states.detach()
batch_size, _, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
end_of_hidden_states = hidden_states.shape[1]
text_seq = 512
mask = None
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask if timestep < 1. else None)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] : ],
)
hidden_states = hidden_states[:, :end_of_hidden_states]
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states[:, :end_of_hidden_states]
def expand_flux_attention_mask(
hidden_states: torch.Tensor,
attn_mask: torch.Tensor,
) -> torch.Tensor:
"""
Expand a mask so that the image is included.
"""
bsz = attn_mask.shape[0]
assert bsz == hidden_states.shape[0]
residual_seq_len = hidden_states.shape[1]
mask_seq_len = attn_mask.shape[1]
expanded_mask = torch.ones(bsz, residual_seq_len)
expanded_mask[:, :mask_seq_len] = attn_mask
return expanded_mask
@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
super().__init__()
self.mlp_hidden_dim = int(dim * mlp_ratio)
self.norm = AdaLayerNormZeroSingle(dim)
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
processor = FluxAttnProcessor2_0()
# processor = FluxSingleAttnProcessor3_0()
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=processor,
qk_norm="rms_norm",
eps=1e-6,
pre_only=True,
)
def forward(
self,
hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
image_rotary_emb=None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
):
residual = hidden_states
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
attn_output = self.attn(
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
single=True,
)
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
gate = gate.unsqueeze(1)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
def __init__(
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
):
super().__init__()
self.norm1 = AdaLayerNormZero(dim)
self.norm1_context = AdaLayerNormZero(dim)
if hasattr(F, "scaled_dot_product_attention"):
processor = FluxAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=False,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=eps,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
image_rotary_emb=None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None
):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (self.norm1_context(encoder_hidden_states, emb=temb))
# Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
single=False,
)
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = (norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None])
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = (
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
+ c_shift_mlp[:, None]
)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = (
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
)
return encoder_hidden_states, hidden_states
@contextmanager
def set_adapter_scale(model, alpha):
original_scaling = {}
for module in model.modules():
if isinstance(module, LoraLayer):
original_scaling[module] = module.scaling.copy()
module.scaling = {k: v * alpha for k, v in module.scaling.items()}
# check whether scaling is prohibited on model
# the original scaling dictionary should be empty
# if there were no lora layers
if not original_scaling:
raise ValueError("scaling is only supported for models with `LoraLayer`s")
try:
yield
finally:
# restore original scaling values after exiting the context
for module, scaling in original_scaling.items():
module.scaling = scaling
class FluxTransformer2DModelWithMasking(
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
):
"""
The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Parameters:
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int] = (16, 56, 56),
##
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = (
self.config.num_attention_heads * self.config.attention_head_dim
)
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
text_time_guidance_cls = (
CombinedTimestepGuidanceTextProjEmbeddings
if guidance_embeds
else CombinedTimestepTextProjEmbeddings
)
self.time_text_embed = text_time_guidance_cls(
embedding_dim=self.inner_dim,
pooled_projection_dim=self.config.pooled_projection_dim,
)
self.context_embedder = nn.Linear(
self.config.joint_attention_dim, self.inner_dim
)
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_single_layers)
]
)
self.norm_out = AdaLayerNormContinuous(
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
)
self.proj_out = nn.Linear(
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
)
self.gradient_checkpointing = False
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModelWithMasking`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if (
joint_attention_kwargs is not None
and joint_attention_kwargs.get("scale", None) is not None
):
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
img_ids = img_ids[0]
# txt_ids = torch.zeros((1024,3)).to(txt_ids.device, dtype=txt_ids.dtype)
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
encoder_hidden_states, hidden_states = (
torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# Flux places the text tokens in front of the image tokens in the
# sequence.
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
if __name__ == "__main__":
dtype = torch.bfloat16
bsz = 2
img = torch.rand((bsz, 16, 64, 64)).to("cuda", dtype=dtype)
timestep = torch.tensor([0.5, 0.5]).to("cuda", dtype=torch.float32)
pooled = torch.rand(bsz, 768).to("cuda", dtype=dtype)
text = torch.rand((bsz, 512, 4096)).to("cuda", dtype=dtype)
attn_mask = torch.tensor([[1.0] * 384 + [0.0] * 128] * bsz).to(
"cuda", dtype=dtype
) # Last 128 positions are masked
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(
batch_size, num_channels_latents, height // 2, 2, width // 2, 2
)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(
batch_size, (height // 2) * (width // 2), num_channels_latents * 4
)
return latents
def _prepare_latent_image_ids(
batch_size, height, width, device="cuda", dtype=dtype
):
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = (
latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
)
latent_image_ids[..., 2] = (
latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
)
latent_image_id_height, latent_image_id_width, latent_image_id_channels = (
latent_image_ids.shape
)
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size,
latent_image_id_height * latent_image_id_width,
latent_image_id_channels,
)
return latent_image_ids.to(device=device, dtype=dtype)
txt_ids = torch.zeros(bsz, text.shape[1], 3).to(device="cuda", dtype=dtype)
vae_scale_factor = 16
height = 2 * (int(512) // vae_scale_factor)
width = 2 * (int(512) // vae_scale_factor)
img_ids = _prepare_latent_image_ids(bsz, height, width)
img = _pack_latents(img, img.shape[0], 16, height, width)
# Gotta go fast
transformer = FluxTransformer2DModelWithMasking.from_config(
{
"attention_head_dim": 128,
"guidance_embeds": True,
"in_channels": 64,
"joint_attention_dim": 4096,
"num_attention_heads": 24,
"num_layers": 4,
"num_single_layers": 8,
"patch_size": 1,
"pooled_projection_dim": 768,
}
).to("cuda", dtype=dtype)
guidance = torch.tensor([2.0], device="cuda")
guidance = guidance.expand(bsz)
with torch.no_grad():
no_mask = transformer(
img,
encoder_hidden_states=text,
pooled_projections=pooled,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
guidance=guidance,
)
mask = transformer(
img,
encoder_hidden_states=text,
pooled_projections=pooled,
timestep=timestep,
img_ids=img_ids,
txt_ids=txt_ids,
guidance=guidance,
attention_mask=attn_mask,
)
assert torch.allclose(no_mask.sample, mask.sample) is False
print("Attention masking test ran OK. Differences in output were detected.")