Spaces:
Sleeping
Sleeping
# This code is modified from the Huggingface repository: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py, and | |
import argparse | |
import hashlib | |
import itertools | |
import json | |
import logging | |
import math | |
import os | |
import warnings | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from huggingface_hub import HfApi, create_repo | |
from model_pipeline import ( | |
CustomDiffusionAttnProcessor, | |
CustomDiffusionPipeline, | |
set_use_memory_efficient_attention_xformers, | |
) | |
from packaging import version | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, PretrainedConfig | |
from utils import ( | |
CustomDiffusionDataset, | |
PromptDataset, | |
collate_fn, | |
filter, | |
getanchorprompts, | |
) | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.models.cross_attention import CrossAttention | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version, is_wandb_available | |
from diffusers.utils.import_utils import is_xformers_available | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.14.0") | |
logger = get_logger(__name__) | |
def create_custom_diffusion(unet, parameter_group): | |
for name, params in unet.named_parameters(): | |
if parameter_group == "cross-attn": | |
if 'attn2.to_k' in name or 'attn2.to_v' in name: | |
params.requires_grad = True | |
else: | |
params.requires_grad = False | |
elif parameter_group == 'full-weight': | |
params.requires_grad = True | |
elif parameter_group == 'embedding': | |
params.requires_grad = False | |
else: | |
raise ValueError( | |
"parameter_group argument only cross-attn, full-weight, embedding" | |
) | |
# change attn class | |
def change_attn(unet): | |
for layer in unet.children(): | |
if type(layer) == CrossAttention: | |
bound_method = set_use_memory_efficient_attention_xformers.__get__( | |
layer, layer.__class__) | |
setattr( | |
layer, 'set_use_memory_efficient_attention_xformers', bound_method) | |
else: | |
change_attn(layer) | |
change_attn(unet) | |
unet.set_attn_processor(CustomDiffusionAttnProcessor()) | |
return unet | |
def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None): | |
img_str = "" | |
for i, image in enumerate(images): | |
image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
img_str += f"./image_{i}.png\n" | |
yaml = f""" | |
--- | |
license: creativeml-openrail-m | |
base_model: {base_model} | |
instance_prompt: {prompt} | |
tags: | |
- stable-diffusion | |
- stable-diffusion-diffusers | |
- text-to-image | |
- diffusers | |
- custom diffusion | |
inference: true | |
--- | |
""" | |
model_card = f""" | |
# Custom Diffusion - {repo_id} | |
These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n | |
{img_str[0]} | |
""" | |
with open(os.path.join(repo_folder, "README.md"), "w") as f: | |
f.write(yaml + model_card) | |
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): | |
text_encoder_config = PretrainedConfig.from_pretrained( | |
pretrained_model_name_or_path, | |
subfolder="text_encoder", | |
revision=revision, | |
) | |
model_class = text_encoder_config.architectures[0] | |
if model_class == "CLIPTextModel": | |
from transformers import CLIPTextModel | |
return CLIPTextModel | |
elif model_class == "RobertaSeriesModelWithTransformation": | |
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( | |
RobertaSeriesModelWithTransformation, | |
) | |
return RobertaSeriesModelWithTransformation | |
else: | |
raise ValueError(f"{model_class} is not supported.") | |
def freeze_params(params): | |
for param in params: | |
param.requires_grad = False | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser( | |
description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--concept_type", | |
type=str, | |
required=True, | |
choices=['style', 'object', 'memorization'], | |
help='the type of removed concepts' | |
) | |
parser.add_argument( | |
"--caption_target", | |
type=str, | |
required=True, | |
help="target style to remove, used when kldiv loss", | |
) | |
parser.add_argument( | |
"--instance_data_dir", | |
type=str, | |
default=None, | |
help="A folder containing the training data of instance images.", | |
) | |
parser.add_argument( | |
"--class_data_dir", | |
type=str, | |
default=None, | |
help="A folder containing the training data of class images.", | |
) | |
parser.add_argument( | |
"--instance_prompt", | |
type=str, | |
help="The prompt with identifier specifying the instance", | |
) | |
parser.add_argument( | |
"--class_prompt", | |
type=str, | |
default=None, | |
help="The prompt to specify images in the same class as provided instance images.", | |
) | |
parser.add_argument( | |
"--mem_impath", | |
type=str, | |
default="", | |
help='the path to saved memorized image. Required when concept_type is memorization' | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="A prompt that is used during validation to verify that the model is learning.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=2, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=500, | |
help=( | |
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--with_prior_preservation", | |
default=False, | |
action="store_true", | |
help="Flag to add prior preservation loss.", | |
) | |
parser.add_argument("--prior_loss_weight", type=float, | |
default=1.0, help="The weight of prior preservation loss.") | |
parser.add_argument( | |
"--train_size", | |
type=int, | |
default=1000, | |
help='the number of generated images used for ablating the concept' | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="custom-diffusion-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--num_class_images", | |
type=int, | |
default=1000, | |
help=( | |
"Minimal anchor class images. If there are not enough images already present in" | |
" class_data_dir, additional images will be sampled with class_prompt." | |
), | |
) | |
parser.add_argument( | |
"--num_class_prompts", | |
type=int, | |
default=200, | |
help=( | |
"Minimal prompts used to generate anchor class images" | |
), | |
) | |
parser.add_argument("--seed", type=int, default=42, | |
help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=250, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=( | |
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
" for more docs" | |
), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-5, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=2, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument( | |
"--parameter_group", | |
type=str, | |
default='cross-attn', | |
choices=['full-weight', 'cross-attn', 'embedding'], | |
help='parameter groups to finetune. Default: full-weight for memorization and cross-attn for others' | |
) | |
parser.add_argument( | |
"--loss_type_reverse", | |
type=str, | |
default='model-based', | |
help="loss type for reverse fine-tuning", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, | |
help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, | |
help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, | |
default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, | |
help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, | |
type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", | |
help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, | |
help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--prior_generation_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp32", "fp16", "bf16"], | |
help=( | |
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." | |
), | |
) | |
parser.add_argument( | |
"--concepts_list", | |
type=str, | |
default=None, | |
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", | |
) | |
parser.add_argument( | |
"--openai_key", | |
type=str, | |
default="", | |
help=( | |
"OPENAI API key. required for ablating objects and memorized images." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, | |
help="For distributed training: local_rank") | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument("--hflip", action="store_true", | |
help="Apply horizontal flip data augmentation.") | |
parser.add_argument("--noaug", action="store_true", | |
help="Dont apply augmentation during data augmentation when this flag is enabled.") | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.with_prior_preservation: | |
if args.concepts_list is None: | |
if args.class_data_dir is None: | |
raise ValueError( | |
"You must specify a data directory for class images.") | |
if args.class_prompt is None: | |
raise ValueError("You must specify prompt for class images.") | |
else: | |
# logger is not available yet | |
if args.class_data_dir is not None: | |
warnings.warn( | |
"You need not use --class_data_dir without --with_prior_preservation.") | |
if args.class_prompt is not None: | |
warnings.warn( | |
"You need not use --class_prompt without --with_prior_preservation.") | |
return args | |
def main(args): | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration( | |
total_limit=args.checkpoints_total_limit) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_dir=logging_dir, | |
project_config=accelerator_project_config, | |
) | |
if args.report_to == "wandb": | |
if not is_wandb_available(): | |
raise ImportError( | |
"Make sure to install wandb if you want to use it for logging during training.") | |
import wandb | |
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate | |
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. | |
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
print(vars(args)) | |
accelerator.init_trackers("custom-diffusion", config=vars(args)) | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
if args.concepts_list is None: | |
args.concepts_list = [ | |
{ | |
"instance_prompt": args.instance_prompt, | |
"class_prompt": args.class_prompt, | |
"instance_data_dir": args.instance_data_dir, | |
"class_data_dir": args.class_data_dir, | |
"caption_target": args.caption_target, | |
} | |
] | |
else: | |
with open(args.concepts_list, "r") as f: | |
args.concepts_list = json.load(f) | |
# Generate class images if prior preservation is enabled. | |
for i, concept in enumerate(args.concepts_list): | |
# directly path to ablation images and its corresponding prompts is provided. | |
if (concept['instance_prompt'] is not None and concept['instance_data_dir'] is not None): | |
break | |
class_images_dir = Path(concept['class_data_dir']) | |
if not class_images_dir.exists(): | |
class_images_dir.mkdir(parents=True, exist_ok=True) | |
os.makedirs(f'{class_images_dir}/images', exist_ok=True) | |
# we need to generate training images | |
if len(list(Path(os.path.join(class_images_dir, 'images')).iterdir())) < args.num_class_images: | |
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 | |
if args.prior_generation_precision == "fp32": | |
torch_dtype = torch.float32 | |
elif args.prior_generation_precision == "fp16": | |
torch_dtype = torch.float16 | |
elif args.prior_generation_precision == "bf16": | |
torch_dtype = torch.bfloat16 | |
pipeline = DiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
torch_dtype=torch_dtype, | |
safety_checker=None, | |
revision=args.revision, | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config( | |
pipeline.scheduler.config) | |
pipeline.set_progress_bar_config(disable=True) | |
pipeline.to(accelerator.device) | |
# need to create prompts using class_prompt. | |
if not os.path.isfile(concept['class_prompt']): | |
# style based prompts are retrieved from laion dataset | |
if args.concept_type == 'style': | |
with open(os.path.join(class_images_dir, 'painting.txt')) as f: | |
class_prompt_collection = [ | |
x.strip() for x in f.readlines()] | |
# LLM based prompt collection. | |
else: | |
class_prompt = concept['class_prompt'] | |
# in case of object query chatGPT to generate captions containing the anchor category | |
if args.concept_type == 'object': | |
class_prompt_collection, _ = getanchorprompts( | |
pipeline, accelerator, class_prompt, args.concept_type, class_images_dir, args.openai_key, args.num_class_prompts) | |
with open(class_images_dir / 'caption_anchor.txt', 'w') as f: | |
for prompt in class_prompt_collection: | |
f.write(prompt + '\n') | |
# in case of memorization query chatGPT to generate different captions that can be paraphrase of the origianl caption | |
elif args.concept_type == 'memorization': | |
class_prompt_collection, caption_target = getanchorprompts( | |
pipeline, accelerator, class_prompt, args.concept_type, class_images_dir, args.openai_key, args.num_class_prompts, mem_impath=args.mem_impath) | |
concept['caption_target'] += f';*+{caption_target}' | |
with open(class_images_dir / 'caption_target.txt', 'w') as f: | |
f.write(concept['caption_target']) | |
print(class_prompt_collection, | |
concept['caption_target']) | |
# class_prompt is filepath to prompts. | |
else: | |
with open(concept['class_prompt']) as f: | |
class_prompt_collection = [ | |
x.strip() for x in f.readlines()] | |
num_new_images = args.num_class_images | |
logger.info( | |
f"Number of class images to sample: {num_new_images}.") | |
sample_dataset = PromptDataset( | |
class_prompt_collection, num_new_images) | |
sample_dataloader = torch.utils.data.DataLoader( | |
sample_dataset, batch_size=args.sample_batch_size) | |
sample_dataloader = accelerator.prepare(sample_dataloader) | |
if os.path.exists(f'{class_images_dir}/caption.txt'): | |
os.remove(f'{class_images_dir}/caption.txt') | |
if os.path.exists(f'{class_images_dir}/images.txt'): | |
os.remove(f'{class_images_dir}/images.txt') | |
for example in tqdm( | |
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | |
): | |
accelerator.wait_for_everyone() | |
with open(f'{class_images_dir}/caption.txt', 'a') as f1, open(f'{class_images_dir}/images.txt', 'a') as f2: | |
images = pipeline(example["prompt"], num_inference_steps=25, guidance_scale=6., eta=1.).images | |
for i, image in enumerate(images): | |
hash_image = hashlib.sha1( | |
image.tobytes()).hexdigest() | |
image_filename = class_images_dir / \ | |
f"images/{example['index'][i]}-{hash_image}.jpg" | |
image.save(image_filename) | |
f2.write(str(image_filename)+'\n') | |
f1.write('\n'.join(example["prompt"]) + '\n') | |
accelerator.wait_for_everyone() | |
del pipeline | |
if args.concept_type == 'memorization': | |
filter(class_images_dir, args.mem_impath, | |
outpath=str(class_images_dir / 'filtered')) | |
if os.path.exists(class_images_dir / 'caption_target.txt'): | |
with open(class_images_dir / 'caption_target.txt', 'r') as f: | |
concept['caption_target'] = f.readlines()[0].strip() | |
class_images_dir = class_images_dir / 'filtered' | |
concept['class_prompt'] = os.path.join( | |
class_images_dir, 'caption.txt') | |
concept['class_data_dir'] = os.path.join( | |
class_images_dir, 'images.txt') | |
concept['instance_prompt'] = os.path.join( | |
class_images_dir, 'caption.txt') | |
concept['instance_data_dir'] = os.path.join( | |
class_images_dir, 'images.txt') | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
print(args.hub_model_id or Path(args.output_dir).name) | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
) | |
print(repo_id) | |
repo_id = args.hub_model_id | |
# Load the tokenizer | |
if args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.tokenizer_name, | |
revision=args.revision, | |
use_fast=False, | |
) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, | |
subfolder="tokenizer", | |
revision=args.revision, | |
use_fast=False, | |
) | |
# import correct text encoder class | |
text_encoder_cls = import_model_class_from_model_name_or_path( | |
args.pretrained_model_name_or_path, args.revision) | |
# Load scheduler and models | |
noise_scheduler = DDPMScheduler.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="scheduler") | |
text_encoder = text_encoder_cls.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
) | |
vae = AutoencoderKL.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) | |
unet = UNet2DConditionModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
) | |
vae.requires_grad_(False) | |
if args.parameter_group != 'embedding': | |
text_encoder.requires_grad_(False) | |
unet = create_custom_diffusion(unet, args.parameter_group) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move unet, vae and text_encoder to device and cast to weight_dtype | |
if accelerator.mixed_precision != "fp16": | |
unet.to(accelerator.device, dtype=weight_dtype) | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warn( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError( | |
"xformers is not available. Make sure it is installed correctly") | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if args.parameter_group == 'embedding': | |
text_encoder.gradient_checkpointing_enable() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * | |
args.train_batch_size * accelerator.num_processes | |
) | |
if args.with_prior_preservation: | |
args.learning_rate = args.learning_rate * 2. | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.AdamW8bit | |
else: | |
optimizer_class = torch.optim.AdamW | |
# Adding a modifier token which is optimized #### | |
# Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py | |
modifier_token_id = [] | |
if args.parameter_group == 'embedding': | |
assert args.concept_type != 'memorization', "embedding finetuning is not supported for memorization" | |
for concept in args.concept_list: | |
# Convert the caption_target to ids | |
token_ids = tokenizer.encode( | |
[concept['caption_target']], add_special_tokens=False) | |
print(token_ids) | |
# Check if initializer_token is a single token or a sequence of tokens | |
modifier_token_id += token_ids | |
# Freeze all parameters except for the token embeddings in text encoder | |
params_to_freeze = itertools.chain( | |
text_encoder.text_model.encoder.parameters(), | |
text_encoder.text_model.final_layer_norm.parameters(), | |
text_encoder.text_model.embeddings.position_embedding.parameters(), | |
) | |
freeze_params(params_to_freeze) | |
params_to_optimize = itertools.chain( | |
text_encoder.get_input_embeddings().parameters()) | |
else: | |
if args.parameter_group == 'cross-attn': | |
params_to_optimize = itertools.chain([x[1] for x in unet.named_parameters() if ( | |
'attn2.to_k' in x[0] or 'attn2.to_v' in x[0])]) | |
if args.parameter_group == 'full-weight': | |
params_to_optimize = itertools.chain(unet.parameters()) | |
# Optimizer creation | |
optimizer = optimizer_class( | |
params_to_optimize, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# Dataset and DataLoaders creation: | |
train_dataset = CustomDiffusionDataset( | |
concepts_list=args.concepts_list, | |
concept_type=args.concept_type, | |
tokenizer=tokenizer, | |
with_prior_preservation=args.with_prior_preservation, | |
size=args.resolution, | |
center_crop=args.center_crop, | |
num_class_images=args.num_class_images, | |
hflip=args.hflip, aug=not args.noaug, | |
) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=args.train_batch_size, | |
shuffle=True, | |
collate_fn=lambda examples: collate_fn( | |
examples, args.with_prior_preservation), | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil( | |
len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
) | |
# Prepare everything with our `accelerator`. | |
if args.parameter_group == 'embedding': | |
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
text_encoder, optimizer, train_dataloader, lr_scheduler | |
) | |
else: | |
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, optimizer, train_dataloader, lr_scheduler | |
) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil( | |
len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil( | |
args.max_train_steps / num_update_steps_per_epoch) | |
# Train! | |
total_batch_size = args.train_batch_size * \ | |
accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info( | |
f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info( | |
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info( | |
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the mos recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
resume_global_step = global_step * args.gradient_accumulation_steps | |
first_epoch = global_step // num_update_steps_per_epoch | |
resume_step = resume_global_step % ( | |
num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm(range(global_step, args.max_train_steps), | |
disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Steps") | |
for epoch in range(first_epoch, args.num_train_epochs): | |
if args.parameter_group == 'embedding': | |
text_encoder.train() | |
else: | |
unet.train() | |
for step, batch in enumerate(train_dataloader): | |
# Skip steps until we reach the resumed step | |
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
if step % args.gradient_accumulation_steps == 0: | |
progress_bar.update(1) | |
continue | |
with accelerator.accumulate(unet) if args.parameter_group != 'embedding' else accelerator.accumulate(text_encoder): | |
# Convert images to latent space | |
latents = vae.encode(batch["pixel_values"].to( | |
dtype=weight_dtype)).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
bsz = latents.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint( | |
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise( | |
latents, noise, timesteps) | |
# Get the text embedding for conditioning | |
encoder_hidden_states = text_encoder(batch["input_ids"])[0] | |
encoder_anchor_hidden_states = text_encoder( | |
batch["input_anchor_ids"])[0] | |
# Predict the noise residual | |
model_pred = unet(noisy_latents, timesteps, | |
encoder_hidden_states).sample | |
with torch.no_grad(): | |
model_pred_anchor = unet(noisy_latents[:encoder_anchor_hidden_states.size( | |
0)], timesteps[:encoder_anchor_hidden_states.size(0)], encoder_anchor_hidden_states).sample | |
# Get the target for loss depending on the prediction type | |
if args.loss_type_reverse == 'model-based': | |
if args.with_prior_preservation: | |
target_prior = torch.chunk(noise, 2, dim=0)[1] | |
target = model_pred_anchor | |
else: | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity( | |
latents, noise, timesteps) | |
else: | |
raise ValueError( | |
f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
if args.with_prior_preservation: | |
target, target_prior = torch.chunk(target, 2, dim=0) | |
if args.with_prior_preservation: | |
# Chunk the noise and model_pred into two parts and compute the loss on each part separately. | |
model_pred, model_pred_prior = torch.chunk( | |
model_pred, 2, dim=0) | |
mask = torch.chunk(batch["mask"], 2, dim=0)[0] | |
# Compute instance loss | |
loss = F.mse_loss(model_pred.float(), | |
target.float(), reduction="none") | |
loss = ( | |
(loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() | |
# Compute prior loss | |
prior_loss = F.mse_loss( | |
model_pred_prior.float(), target_prior.float(), reduction="mean") | |
# Add the prior loss to the instance loss. | |
loss = loss + args.prior_loss_weight * prior_loss | |
else: | |
mask = batch["mask"] | |
loss = F.mse_loss(model_pred.float(), | |
target.float(), reduction="none") | |
loss = ( | |
(loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() | |
accelerator.backward(loss) | |
# Zero out the gradients for all token embeddings except the newly added | |
# embeddings for the concept, as we only want to optimize the concept embeddings | |
if args.parameter_group == 'embedding': | |
if accelerator.num_processes > 1: | |
grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad | |
else: | |
grads_text_encoder = text_encoder.get_input_embeddings().weight.grad | |
# Get the index for tokens that we want to zero the grads for | |
index_grads_to_zero = torch.arange( | |
len(tokenizer)) != modifier_token_id[0] | |
for i in range(len(modifier_token_id[1:])): | |
index_grads_to_zero = index_grads_to_zero & ( | |
torch.arange(len(tokenizer)) != modifier_token_id[i]) | |
grads_text_encoder.data[index_grads_to_zero, | |
:] = grads_text_encoder.data[index_grads_to_zero, :].fill_(0) | |
if accelerator.sync_gradients: | |
params_to_clip = ( | |
itertools.chain(text_encoder.parameters()) | |
if args.parameter_group == 'embedding' | |
else itertools.chain([x[1] for x in unet.named_parameters() if ('attn2' in x[0])]) | |
if args.parameter_group == 'cross-attn' | |
else itertools.chain(unet.parameters()) | |
) | |
accelerator.clip_grad_norm_( | |
params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
if global_step % args.checkpointing_steps == 0: | |
if accelerator.is_main_process: | |
pipeline = CustomDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=accelerator.unwrap_model(unet), | |
text_encoder=accelerator.unwrap_model( | |
text_encoder), | |
tokenizer=tokenizer, | |
revision=args.revision, | |
modifier_token_id=modifier_token_id, | |
) | |
save_path = os.path.join( | |
args.output_dir, f"delta-{global_step}") | |
pipeline.save_pretrained( | |
save_path, parameter_group=args.parameter_group) | |
logger.info(f"Saved state to {save_path}") | |
logs = {"loss": loss.detach().item( | |
), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
if accelerator.is_main_process: | |
if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
logger.info( | |
f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
f" {args.validation_prompt}." | |
) | |
# create pipeline | |
pipeline = CustomDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=accelerator.unwrap_model(unet), | |
text_encoder=accelerator.unwrap_model(text_encoder), | |
tokenizer=tokenizer, | |
revision=args.revision, | |
modifier_token_id=modifier_token_id, | |
) | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config( | |
pipeline.scheduler.config) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
# run inference | |
generator = torch.Generator( | |
device=accelerator.device).manual_seed(args.seed) | |
images = [ | |
pipeline(args.validation_prompt, num_inference_steps=25, | |
generator=generator, eta=1.).images[0] | |
for _ in range(args.num_validation_images) | |
] | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) | |
for img in images]) | |
tracker.writer.add_images( | |
"validation", np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
"validation": [ | |
wandb.Image( | |
image, caption=f"{i}: {args.validation_prompt}") | |
for i, image in enumerate(images) | |
] | |
} | |
) | |
del pipeline | |
torch.cuda.empty_cache() | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = unet.to(torch.float32) | |
pipeline = CustomDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=accelerator.unwrap_model(unet), | |
text_encoder=accelerator.unwrap_model(text_encoder), | |
tokenizer=tokenizer, | |
revision=args.revision, | |
modifier_token_id=modifier_token_id, | |
) | |
save_path = os.path.join(args.output_dir, "delta.bin") | |
pipeline.save_pretrained( | |
save_path, parameter_group=args.parameter_group) | |
# run inference | |
if args.validation_prompt and args.num_validation_images > 0: | |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config( | |
pipeline.scheduler.config) | |
pipeline = pipeline.to(accelerator.device) | |
pipeline.set_progress_bar_config(disable=True) | |
# run inference | |
generator = torch.Generator( | |
device=accelerator.device).manual_seed(args.seed) | |
images = [ | |
pipeline(args.validation_prompt, num_inference_steps=25, | |
generator=generator, eta=1.).images[0] | |
for _ in range(args.num_validation_images) | |
] | |
for tracker in accelerator.trackers: | |
if tracker.name == "tensorboard": | |
np_images = np.stack([np.asarray(img) for img in images]) | |
tracker.writer.add_images( | |
"test", np_images, epoch, dataformats="NHWC") | |
if tracker.name == "wandb": | |
tracker.log( | |
{ | |
"test": [ | |
wandb.Image( | |
image, caption=f"{i}: {args.validation_prompt}") | |
for i, image in enumerate(images) | |
] | |
} | |
) | |
if args.push_to_hub: | |
save_model_card( | |
repo_id, | |
images=images, | |
base_model=args.pretrained_model_name_or_path, | |
prompt=args.instance_prompt, | |
repo_folder=args.output_dir, | |
) | |
api = HfApi(token=args.hub_token) | |
api.upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
path_in_repo='.', | |
repo_type='model' | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |