Nupur Kumari
concept ablation
8173ae1
raw
history blame
50.2 kB
# This code is modified from the Huggingface repository: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py, and
import argparse
import hashlib
import itertools
import json
import logging
import math
import os
import warnings
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import HfApi, create_repo
from model_pipeline import (
CustomDiffusionAttnProcessor,
CustomDiffusionPipeline,
set_use_memory_efficient_attention_xformers,
)
from packaging import version
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
from utils import (
CustomDiffusionDataset,
PromptDataset,
collate_fn,
filter,
getanchorprompts,
)
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
UNet2DConditionModel,
)
from diffusers.models.cross_attention import CrossAttention
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.14.0")
logger = get_logger(__name__)
def create_custom_diffusion(unet, parameter_group):
for name, params in unet.named_parameters():
if parameter_group == "cross-attn":
if 'attn2.to_k' in name or 'attn2.to_v' in name:
params.requires_grad = True
else:
params.requires_grad = False
elif parameter_group == 'full-weight':
params.requires_grad = True
elif parameter_group == 'embedding':
params.requires_grad = False
else:
raise ValueError(
"parameter_group argument only cross-attn, full-weight, embedding"
)
# change attn class
def change_attn(unet):
for layer in unet.children():
if type(layer) == CrossAttention:
bound_method = set_use_memory_efficient_attention_xformers.__get__(
layer, layer.__class__)
setattr(
layer, 'set_use_memory_efficient_attention_xformers', bound_method)
else:
change_attn(layer)
change_attn(unet)
unet.set_attn_processor(CustomDiffusionAttnProcessor())
return unet
def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None):
img_str = ""
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"./image_{i}.png\n"
yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- custom diffusion
inference: true
---
"""
model_card = f"""
# Custom Diffusion - {repo_id}
These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n
{img_str[0]}
"""
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card)
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesModelWithTransformation,
)
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def freeze_params(params):
for param in params:
param.requires_grad = False
def parse_args(input_args=None):
parser = argparse.ArgumentParser(
description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--concept_type",
type=str,
required=True,
choices=['style', 'object', 'memorization'],
help='the type of removed concepts'
)
parser.add_argument(
"--caption_target",
type=str,
required=True,
help="target style to remove, used when kldiv loss",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--mem_impath",
type=str,
default="",
help='the path to saved memorized image. Required when concept_type is memorization'
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="A prompt that is used during validation to verify that the model is learning.",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=2,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=500,
help=(
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float,
default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--train_size",
type=int,
default=1000,
help='the number of generated images used for ablating the concept'
)
parser.add_argument(
"--output_dir",
type=str,
default="custom-diffusion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--num_class_images",
type=int,
default=1000,
help=(
"Minimal anchor class images. If there are not enough images already present in"
" class_data_dir, additional images will be sampled with class_prompt."
),
)
parser.add_argument(
"--num_class_prompts",
type=int,
default=200,
help=(
"Minimal prompts used to generate anchor class images"
),
)
parser.add_argument("--seed", type=int, default=42,
help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=250,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more docs"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=2,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--parameter_group",
type=str,
default='cross-attn',
choices=['full-weight', 'cross-attn', 'embedding'],
help='parameter groups to finetune. Default: full-weight for memorization and cross-attn for others'
)
parser.add_argument(
"--loss_type_reverse",
type=str,
default='model-based',
help="loss type for reverse fine-tuning",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9,
help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999,
help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float,
default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08,
help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0,
type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true",
help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None,
help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--prior_generation_precision",
type=str,
default=None,
choices=["no", "fp32", "fp16", "bf16"],
help=(
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
),
)
parser.add_argument(
"--concepts_list",
type=str,
default=None,
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.",
)
parser.add_argument(
"--openai_key",
type=str,
default="",
help=(
"OPENAI API key. required for ablating objects and memorized images."
),
)
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument("--hflip", action="store_true",
help="Apply horizontal flip data augmentation.")
parser.add_argument("--noaug", action="store_true",
help="Dont apply augmentation during data augmentation when this flag is enabled.")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.concepts_list is None:
if args.class_data_dir is None:
raise ValueError(
"You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
# logger is not available yet
if args.class_data_dir is not None:
warnings.warn(
"You need not use --class_data_dir without --with_prior_preservation.")
if args.class_prompt is not None:
warnings.warn(
"You need not use --class_prompt without --with_prior_preservation.")
return args
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(
total_limit=args.checkpoints_total_limit)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
project_config=accelerator_project_config,
)
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError(
"Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
print(vars(args))
accelerator.init_trackers("custom-diffusion", config=vars(args))
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
if args.concepts_list is None:
args.concepts_list = [
{
"instance_prompt": args.instance_prompt,
"class_prompt": args.class_prompt,
"instance_data_dir": args.instance_data_dir,
"class_data_dir": args.class_data_dir,
"caption_target": args.caption_target,
}
]
else:
with open(args.concepts_list, "r") as f:
args.concepts_list = json.load(f)
# Generate class images if prior preservation is enabled.
for i, concept in enumerate(args.concepts_list):
# directly path to ablation images and its corresponding prompts is provided.
if (concept['instance_prompt'] is not None and concept['instance_data_dir'] is not None):
break
class_images_dir = Path(concept['class_data_dir'])
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True, exist_ok=True)
os.makedirs(f'{class_images_dir}/images', exist_ok=True)
# we need to generate training images
if len(list(Path(os.path.join(class_images_dir, 'images')).iterdir())) < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
if args.prior_generation_precision == "fp32":
torch_dtype = torch.float32
elif args.prior_generation_precision == "fp16":
torch_dtype = torch.float16
elif args.prior_generation_precision == "bf16":
torch_dtype = torch.bfloat16
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=torch_dtype,
safety_checker=None,
revision=args.revision,
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config)
pipeline.set_progress_bar_config(disable=True)
pipeline.to(accelerator.device)
# need to create prompts using class_prompt.
if not os.path.isfile(concept['class_prompt']):
# style based prompts are retrieved from laion dataset
if args.concept_type == 'style':
with open(os.path.join(class_images_dir, 'painting.txt')) as f:
class_prompt_collection = [
x.strip() for x in f.readlines()]
# LLM based prompt collection.
else:
class_prompt = concept['class_prompt']
# in case of object query chatGPT to generate captions containing the anchor category
if args.concept_type == 'object':
class_prompt_collection, _ = getanchorprompts(
pipeline, accelerator, class_prompt, args.concept_type, class_images_dir, args.openai_key, args.num_class_prompts)
with open(class_images_dir / 'caption_anchor.txt', 'w') as f:
for prompt in class_prompt_collection:
f.write(prompt + '\n')
# in case of memorization query chatGPT to generate different captions that can be paraphrase of the origianl caption
elif args.concept_type == 'memorization':
class_prompt_collection, caption_target = getanchorprompts(
pipeline, accelerator, class_prompt, args.concept_type, class_images_dir, args.openai_key, args.num_class_prompts, mem_impath=args.mem_impath)
concept['caption_target'] += f';*+{caption_target}'
with open(class_images_dir / 'caption_target.txt', 'w') as f:
f.write(concept['caption_target'])
print(class_prompt_collection,
concept['caption_target'])
# class_prompt is filepath to prompts.
else:
with open(concept['class_prompt']) as f:
class_prompt_collection = [
x.strip() for x in f.readlines()]
num_new_images = args.num_class_images
logger.info(
f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(
class_prompt_collection, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(
sample_dataset, batch_size=args.sample_batch_size)
sample_dataloader = accelerator.prepare(sample_dataloader)
if os.path.exists(f'{class_images_dir}/caption.txt'):
os.remove(f'{class_images_dir}/caption.txt')
if os.path.exists(f'{class_images_dir}/images.txt'):
os.remove(f'{class_images_dir}/images.txt')
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
):
accelerator.wait_for_everyone()
with open(f'{class_images_dir}/caption.txt', 'a') as f1, open(f'{class_images_dir}/images.txt', 'a') as f2:
images = pipeline(example["prompt"], num_inference_steps=25, guidance_scale=6., eta=1.).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(
image.tobytes()).hexdigest()
image_filename = class_images_dir / \
f"images/{example['index'][i]}-{hash_image}.jpg"
image.save(image_filename)
f2.write(str(image_filename)+'\n')
f1.write('\n'.join(example["prompt"]) + '\n')
accelerator.wait_for_everyone()
del pipeline
if args.concept_type == 'memorization':
filter(class_images_dir, args.mem_impath,
outpath=str(class_images_dir / 'filtered'))
if os.path.exists(class_images_dir / 'caption_target.txt'):
with open(class_images_dir / 'caption_target.txt', 'r') as f:
concept['caption_target'] = f.readlines()[0].strip()
class_images_dir = class_images_dir / 'filtered'
concept['class_prompt'] = os.path.join(
class_images_dir, 'caption.txt')
concept['class_data_dir'] = os.path.join(
class_images_dir, 'images.txt')
concept['instance_prompt'] = os.path.join(
class_images_dir, 'caption.txt')
concept['instance_data_dir'] = os.path.join(
class_images_dir, 'images.txt')
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
print(args.hub_model_id or Path(args.output_dir).name)
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
)
print(repo_id)
repo_id = args.hub_model_id
# Load the tokenizer
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
use_fast=False,
)
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = text_encoder_cls.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
vae.requires_grad_(False)
if args.parameter_group != 'embedding':
text_encoder.requires_grad_(False)
unet = create_custom_diffusion(unet, args.parameter_group)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
if accelerator.mixed_precision != "fp16":
unet.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.parameter_group == 'embedding':
text_encoder.gradient_checkpointing_enable()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps *
args.train_batch_size * accelerator.num_processes
)
if args.with_prior_preservation:
args.learning_rate = args.learning_rate * 2.
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Adding a modifier token which is optimized ####
# Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py
modifier_token_id = []
if args.parameter_group == 'embedding':
assert args.concept_type != 'memorization', "embedding finetuning is not supported for memorization"
for concept in args.concept_list:
# Convert the caption_target to ids
token_ids = tokenizer.encode(
[concept['caption_target']], add_special_tokens=False)
print(token_ids)
# Check if initializer_token is a single token or a sequence of tokens
modifier_token_id += token_ids
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
params_to_optimize = itertools.chain(
text_encoder.get_input_embeddings().parameters())
else:
if args.parameter_group == 'cross-attn':
params_to_optimize = itertools.chain([x[1] for x in unet.named_parameters() if (
'attn2.to_k' in x[0] or 'attn2.to_v' in x[0])])
if args.parameter_group == 'full-weight':
params_to_optimize = itertools.chain(unet.parameters())
# Optimizer creation
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Dataset and DataLoaders creation:
train_dataset = CustomDiffusionDataset(
concepts_list=args.concepts_list,
concept_type=args.concept_type,
tokenizer=tokenizer,
with_prior_preservation=args.with_prior_preservation,
size=args.resolution,
center_crop=args.center_crop,
num_class_images=args.num_class_images,
hflip=args.hflip, aug=not args.noaug,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(
examples, args.with_prior_preservation),
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
if args.parameter_group == 'embedding':
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = args.train_batch_size * \
accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(
f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the mos recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (
num_update_steps_per_epoch * args.gradient_accumulation_steps)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps),
disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
for epoch in range(first_epoch, args.num_train_epochs):
if args.parameter_group == 'embedding':
text_encoder.train()
else:
unet.train()
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet) if args.parameter_group != 'embedding' else accelerator.accumulate(text_encoder):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(
dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
encoder_anchor_hidden_states = text_encoder(
batch["input_anchor_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps,
encoder_hidden_states).sample
with torch.no_grad():
model_pred_anchor = unet(noisy_latents[:encoder_anchor_hidden_states.size(
0)], timesteps[:encoder_anchor_hidden_states.size(0)], encoder_anchor_hidden_states).sample
# Get the target for loss depending on the prediction type
if args.loss_type_reverse == 'model-based':
if args.with_prior_preservation:
target_prior = torch.chunk(noise, 2, dim=0)[1]
target = model_pred_anchor
else:
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(
latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
target, target_prior = torch.chunk(target, 2, dim=0)
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(
model_pred, 2, dim=0)
mask = torch.chunk(batch["mask"], 2, dim=0)[0]
# Compute instance loss
loss = F.mse_loss(model_pred.float(),
target.float(), reduction="none")
loss = (
(loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean()
# Compute prior loss
prior_loss = F.mse_loss(
model_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
mask = batch["mask"]
loss = F.mse_loss(model_pred.float(),
target.float(), reduction="none")
loss = (
(loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean()
accelerator.backward(loss)
# Zero out the gradients for all token embeddings except the newly added
# embeddings for the concept, as we only want to optimize the concept embeddings
if args.parameter_group == 'embedding':
if accelerator.num_processes > 1:
grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad
else:
grads_text_encoder = text_encoder.get_input_embeddings().weight.grad
# Get the index for tokens that we want to zero the grads for
index_grads_to_zero = torch.arange(
len(tokenizer)) != modifier_token_id[0]
for i in range(len(modifier_token_id[1:])):
index_grads_to_zero = index_grads_to_zero & (
torch.arange(len(tokenizer)) != modifier_token_id[i])
grads_text_encoder.data[index_grads_to_zero,
:] = grads_text_encoder.data[index_grads_to_zero, :].fill_(0)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(text_encoder.parameters())
if args.parameter_group == 'embedding'
else itertools.chain([x[1] for x in unet.named_parameters() if ('attn2' in x[0])])
if args.parameter_group == 'cross-attn'
else itertools.chain(unet.parameters())
)
accelerator.clip_grad_norm_(
params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
pipeline = CustomDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(
text_encoder),
tokenizer=tokenizer,
revision=args.revision,
modifier_token_id=modifier_token_id,
)
save_path = os.path.join(
args.output_dir, f"delta-{global_step}")
pipeline.save_pretrained(
save_path, parameter_group=args.parameter_group)
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(
), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if accelerator.is_main_process:
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
# create pipeline
pipeline = CustomDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
revision=args.revision,
modifier_token_id=modifier_token_id,
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(
device=accelerator.device).manual_seed(args.seed)
images = [
pipeline(args.validation_prompt, num_inference_steps=25,
generator=generator, eta=1.).images[0]
for _ in range(args.num_validation_images)
]
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img)
for img in images])
tracker.writer.add_images(
"validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(
image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
del pipeline
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = unet.to(torch.float32)
pipeline = CustomDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
revision=args.revision,
modifier_token_id=modifier_token_id,
)
save_path = os.path.join(args.output_dir, "delta.bin")
pipeline.save_pretrained(
save_path, parameter_group=args.parameter_group)
# run inference
if args.validation_prompt and args.num_validation_images > 0:
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(
device=accelerator.device).manual_seed(args.seed)
images = [
pipeline(args.validation_prompt, num_inference_steps=25,
generator=generator, eta=1.).images[0]
for _ in range(args.num_validation_images)
]
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images(
"test", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"test": [
wandb.Image(
image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
if args.push_to_hub:
save_model_card(
repo_id,
images=images,
base_model=args.pretrained_model_name_or_path,
prompt=args.instance_prompt,
repo_folder=args.output_dir,
)
api = HfApi(token=args.hub_token)
api.upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
path_in_repo='.',
repo_type='model'
)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)