Spaces:
Build error
Build error
File size: 19,857 Bytes
9042918 25dd0a9 9042918 cb0072c ddb7b56 9042918 9e8e54c 9042918 cb0072c c4a18be 7b6145e dbc579c 7b6145e 9042918 cb0072c 9042918 a8744f2 9042918 ddb7b56 9042918 1fa5d2c 9042918 1fa5d2c 9042918 1fa5d2c 9042918 dbc579c 9042918 dbc579c 9042918 dbc579c 9042918 c16e3db 1fa5d2c e417d7a 7b6145e dbc579c 7b6145e 9042918 71da51f 7b6145e 7060e57 9042918 dbc579c 9042918 dc3ca3a 9042918 1fa5d2c 9042918 1fa5d2c 9042918 7b6145e dbc579c 9042918 1fa5d2c d2a1d65 9042918 c16e3db 9042918 1fa5d2c 9042918 1fa5d2c 7b6145e 9042918 c16e3db 1fa5d2c c16e3db 9042918 1fa5d2c 9042918 25dd0a9 9042918 c16e3db 9042918 c16e3db 9042918 3b1d67d 1fa5d2c c16e3db 1fa5d2c 9042918 f02893e 9042918 7b6145e 9042918 c16e3db 9042918 c16e3db 9042918 c16e3db 9042918 c16e3db 1fa5d2c 7b6145e 9042918 c16e3db 9042918 c16e3db 1fa5d2c 7b6145e 9042918 7b6145e 9042918 e09c88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
#!/usr/bin/env python
"""Demo app for https://github.com/adobe-research/custom-diffusion.
The code in this repo is partly adapted from the following repository:
https://huggingface.co/spaces/hysts/LoRA-SD-training
MIT License
Copyright (c) 2022 hysts
==========================================================================================
Adobe’s modifications are Copyright 2022 Adobe Research. All rights reserved.
Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
LICENSE.
==========================================================================================
"""
from __future__ import annotations
import sys
import os
import pathlib
import gradio as gr
import torch
from inference import InferencePipeline
from trainer import Trainer
from uploader import upload
TITLE = '# Custom Diffusion + StableDiffusion Training UI'
DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
<a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
'''
DETAILDESCRIPTION='''
Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20).
We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object.
This also reduces the extra storage for each additional concept to 75MB. Our method also allows you to use a combination of concepts. There's still limitations on which compositions work. For more analysis please refer to our [website](https://www.cs.cmu.edu/~custom-diffusion/).
<center>
<img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
</center>
'''
ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
else:
SETTINGS = 'Settings'
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
'''
os.system("git clone https://github.com/adobe-research/custom-diffusion")
sys.path.append("custom-diffusion")
def show_warning(warning_text: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown(warning_text)
return demo
def update_output_files() -> dict:
paths = sorted(pathlib.Path('results').glob('*.bin'))
paths = [path.as_posix() for path in paths] # type: ignore
return gr.update(value=paths or None)
def create_training_demo(trainer: Trainer,
pipe: InferencePipeline) -> gr.Blocks:
with gr.Blocks() as demo:
base_model = gr.Dropdown(
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
value='CompVis/stable-diffusion-v1-4',
label='Base Model',
visible=True)
resolution = gr.Dropdown(choices=['512', '768'],
value='512',
label='Resolution',
visible=True)
with gr.Row():
with gr.Box():
concept_images_collection = []
concept_prompt_collection = []
class_prompt_collection = []
buttons_collection = []
delete_collection = []
is_visible = []
maximum_concepts = 3
row = [None] * maximum_concepts
for x in range(maximum_concepts):
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
ordinal_concept = ["<new1> cat", "<new2> wooden pot", "<new3> chair"]
if(x == 0):
visible = True
is_visible.append(gr.State(value=True))
else:
visible = False
is_visible.append(gr.State(value=False))
concept_images_collection.append(gr.Files(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', visible=visible))
with gr.Column(visible=visible) as row[x]:
concept_prompt_collection.append(
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt ''', max_lines=1,
placeholder=f'''Example: "photo of a {ordinal_concept[x]}"''' )
)
class_prompt_collection.append(
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} class prompt ''',
max_lines=1, placeholder=f'''Example: "{ordinal_concept[x][7:]}"''')
)
with gr.Row():
if(x < maximum_concepts-1):
buttons_collection.append(gr.Button(value=f"Add {ordinal(x+2)} concept", visible=visible))
if(x > 0):
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
counter_add = 1
for button in buttons_collection:
if(counter_add < len(buttons_collection)):
button.click(lambda:
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
None,
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], concept_images_collection[counter_add]], queue=False)
else:
button.click(lambda:
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True],
None,
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
counter_add += 1
counter_delete = 1
for delete_button in delete_collection:
if(counter_delete < len(delete_collection)+1):
if counter_delete == 1:
delete_button.click(lambda:
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),False],
None,
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], buttons_collection[counter_delete], is_visible[counter_delete]], queue=False)
else:
delete_button.click(lambda:
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), False],
None,
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
counter_delete += 1
gr.Markdown('''
- We use "\<new1\>" modifier_token in front of the concept, e.g., "\<new1\> cat". For multiple concepts use "\<new2\>", "\<new3\>" etc. Increase the number of steps with more concepts.
- For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
- For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
- Class prompt should be the object category.
- If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat".
''')
with gr.Box():
gr.Markdown('Training Parameters')
with gr.Row():
modifier_token = gr.Checkbox(label='modifier token',
value=True)
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
value=False)
num_training_steps = gr.Number(
label='Number of Training Steps', value=1000, precision=0)
learning_rate = gr.Number(label='Learning Rate', value=0.00001)
batch_size = gr.Number(
label='batch_size', value=1, precision=0)
with gr.Row():
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
with gr.Accordion('Other Parameters', open=False):
gradient_accumulation = gr.Number(
label='Number of Gradient Accumulation',
value=1,
precision=0)
num_reg_images = gr.Number(
label='Number of Class Concept images',
value=200,
precision=0)
gen_images = gr.Checkbox(label='Generated images as regularization',
value=False)
gr.Markdown('''
- It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU.
- Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
- Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
- We retrieve real images for class concept using clip_retireval library which can take some time.
''')
run_button = gr.Button('Start Training')
with gr.Box():
with gr.Row():
check_status_button = gr.Button('Check Training Status')
with gr.Column():
with gr.Box():
gr.Markdown('Message')
training_status = gr.Markdown()
output_files = gr.Files(label='Trained Weight Files')
run_button.click(fn=pipe.clear,
inputs=None,
outputs=None,)
run_button.click(fn=trainer.run,
inputs=[
base_model,
resolution,
num_training_steps,
learning_rate,
train_text_encoder,
modifier_token,
gradient_accumulation,
batch_size,
use_8bit_adam,
gradient_checkpointing,
gen_images,
num_reg_images,
] +
concept_images_collection +
concept_prompt_collection +
class_prompt_collection
,
outputs=[
training_status,
output_files,
],
queue=False)
check_status_button.click(fn=trainer.check_if_running,
inputs=None,
outputs=training_status,
queue=False)
check_status_button.click(fn=update_output_files,
inputs=None,
outputs=output_files,
queue=False)
return demo
def find_weight_files() -> list[str]:
curr_dir = pathlib.Path(__file__).parent
paths = sorted(curr_dir.rglob('*.bin'))
paths = [path for path in paths if '.lfs' not in path.name]
return [path.relative_to(curr_dir).as_posix() for path in paths]
def reload_custom_diffusion_weight_list() -> dict:
return gr.update(choices=find_weight_files())
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
base_model = gr.Dropdown(
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
value='CompVis/stable-diffusion-v1-4',
label='Base Model',
visible=True)
resolution = gr.Dropdown(choices=[512, 768],
value=512,
label='Resolution',
visible=True)
reload_button = gr.Button('Reload Weight List')
weight_name = gr.Dropdown(choices=find_weight_files(),
value='custom-diffusion-models/cat.bin',
label='Custom Diffusion Weight File')
prompt = gr.Textbox(
label='Prompt',
max_lines=1,
placeholder='Example: "\<new1\> cat in outer space"')
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=42)
with gr.Accordion('Other Parameters', open=False):
num_steps = gr.Slider(label='Number of Steps',
minimum=0,
maximum=500,
step=1,
value=200)
guidance_scale = gr.Slider(label='CFG Scale',
minimum=0,
maximum=50,
step=0.1,
value=6)
eta = gr.Slider(label='DDIM eta',
minimum=0,
maximum=1.,
step=0.1,
value=1.)
batch_size = gr.Slider(label='Batch Size',
minimum=0,
maximum=10.,
step=1,
value=2)
run_button = gr.Button('Generate')
gr.Markdown('''
- Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
- After training, you can press "Reload Weight List" button to load your trained model names.
- Change default batch-size and steps for faster sampling.
''')
with gr.Column():
result = gr.Image(label='Result')
reload_button.click(fn=reload_custom_diffusion_weight_list,
inputs=None,
outputs=weight_name)
prompt.submit(fn=pipe.run,
inputs=[
base_model,
weight_name,
prompt,
seed,
num_steps,
guidance_scale,
eta,
batch_size,
resolution
],
outputs=result,
queue=False)
run_button.click(fn=pipe.run,
inputs=[
base_model,
weight_name,
prompt,
seed,
num_steps,
guidance_scale,
eta,
batch_size,
resolution
],
outputs=result,
queue=False)
return demo
def create_upload_demo() -> gr.Blocks:
with gr.Blocks() as demo:
model_name = gr.Textbox(label='Model Name')
hf_token = gr.Textbox(
label='Hugging Face Token (with write permission)')
upload_button = gr.Button('Upload')
with gr.Box():
gr.Markdown('Message')
result = gr.Markdown()
gr.Markdown('''
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
''')
upload_button.click(fn=upload,
inputs=[model_name, hf_token],
outputs=result)
return demo
pipe = InferencePipeline()
trainer = Trainer()
with gr.Blocks(css='style.css') as demo:
if os.getenv('IS_SHARED_UI'):
show_warning(SHARED_UI_WARNING)
if not torch.cuda.is_available():
show_warning(CUDA_NOT_AVAILABLE_WARNING)
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
gr.Markdown(DETAILDESCRIPTION)
with gr.Tabs():
with gr.TabItem('Train'):
create_training_demo(trainer, pipe)
with gr.TabItem('Test'):
create_inference_demo(pipe)
with gr.TabItem('Upload'):
create_upload_demo()
demo.queue(default_enabled=False).launch(share=False)
|