Spaces:
Build error
Build error
#!/usr/bin/env python | |
"""Demo app for https://github.com/adobe-research/custom-diffusion. | |
The code in this repo is partly adapted from the following repository: | |
https://huggingface.co/spaces/hysts/LoRA-SD-training | |
""" | |
from __future__ import annotations | |
import sys | |
import os | |
import pathlib | |
import gradio as gr | |
import torch | |
from inference import InferencePipeline | |
from trainer import Trainer | |
from uploader import upload | |
TITLE = '# Custom Diffusion + StableDiffusion Training UI' | |
DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion). | |
It is recommended to upgrade to GPU in Settings after duplicating this space to use it. | |
<a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
''' | |
DETAILDESCRIPTION=''' | |
Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20). | |
We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object. | |
This also reduces the extra storage for each additional concept to 75MB. | |
Our method further allows you to use a combination of concepts. Demo for multiple concepts will be added soon. | |
<center> | |
<img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" > | |
</center> | |
''' | |
ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion' | |
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID) | |
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU. | |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> | |
''' | |
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID: | |
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>' | |
else: | |
SETTINGS = 'Settings' | |
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU. | |
<center> | |
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces. | |
"T4 small" is sufficient to run this demo. | |
</center> | |
''' | |
os.system("git clone https://github.com/adobe-research/custom-diffusion") | |
sys.path.append("custom-diffusion") | |
def show_warning(warning_text: str) -> gr.Blocks: | |
with gr.Blocks() as demo: | |
with gr.Box(): | |
gr.Markdown(warning_text) | |
return demo | |
def update_output_files() -> dict: | |
paths = sorted(pathlib.Path('results').glob('*.pt')) | |
paths = [path.as_posix() for path in paths] # type: ignore | |
return gr.update(value=paths or None) | |
def create_training_demo(trainer: Trainer, | |
pipe: InferencePipeline) -> gr.Blocks: | |
with gr.Blocks() as demo: | |
base_model = gr.Dropdown( | |
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'], | |
value='CompVis/stable-diffusion-v1-4', | |
label='Base Model', | |
visible=True) | |
resolution = gr.Dropdown(choices=['512', '768'], | |
value='512', | |
label='Resolution', | |
visible=True) | |
with gr.Row(): | |
with gr.Box(): | |
gr.Markdown('Training Data') | |
concept_images = gr.Files(label='Images for your concept') | |
with gr.Row(): | |
class_prompt = gr.Textbox(label='Class Prompt', | |
max_lines=1, placeholder='Example: "cat"') | |
with gr.Column(): | |
modifier_token = gr.Checkbox(label='modifier token', | |
value=True) | |
train_text_encoder = gr.Checkbox(label='Train Text Encoder', | |
value=False) | |
concept_prompt = gr.Textbox(label='Concept Prompt', | |
max_lines=1, placeholder='Example: "photo of a \<new1\> cat"') | |
gr.Markdown(''' | |
- We use "\<new1\>" modifier token in front of the concept, e.g., "\<new1\> cat". By default modifier_token is enabled. | |
- If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat". | |
- For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt. | |
- For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt. | |
- Class prompt should be the object category. | |
''') | |
with gr.Box(): | |
gr.Markdown('Training Parameters') | |
num_training_steps = gr.Number( | |
label='Number of Training Steps', value=1000, precision=0) | |
learning_rate = gr.Number(label='Learning Rate', value=0.00001) | |
batch_size = gr.Number( | |
label='batch_size', value=1, precision=0) | |
with gr.Row(): | |
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True) | |
gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False) | |
with gr.Accordion('Other Parameters', open=False): | |
gradient_accumulation = gr.Number( | |
label='Number of Gradient Accumulation', | |
value=1, | |
precision=0) | |
gen_images = gr.Checkbox(label='Generated images as regularization', | |
value=False) | |
gr.Markdown(''' | |
- It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU. | |
- Our results in the paper are trained with batch-size 4 (8 including class regularization samples). | |
- Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass. | |
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab. | |
''') | |
run_button = gr.Button('Start Training') | |
with gr.Box(): | |
with gr.Row(): | |
check_status_button = gr.Button('Check Training Status') | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown('Message') | |
training_status = gr.Markdown() | |
output_files = gr.Files(label='Trained Weight Files') | |
run_button.click(fn=pipe.clear, | |
inputs=None, | |
outputs=None,) | |
run_button.click(fn=trainer.run, | |
inputs=[ | |
base_model, | |
resolution, | |
concept_images, | |
concept_prompt, | |
class_prompt, | |
num_training_steps, | |
learning_rate, | |
train_text_encoder, | |
modifier_token, | |
gradient_accumulation, | |
batch_size, | |
use_8bit_adam, | |
gradient_checkpointing, | |
gen_images | |
], | |
outputs=[ | |
training_status, | |
output_files, | |
], | |
queue=False) | |
check_status_button.click(fn=trainer.check_if_running, | |
inputs=None, | |
outputs=training_status, | |
queue=False) | |
check_status_button.click(fn=update_output_files, | |
inputs=None, | |
outputs=output_files, | |
queue=False) | |
return demo | |
def find_weight_files() -> list[str]: | |
curr_dir = pathlib.Path(__file__).parent | |
paths = sorted(curr_dir.rglob('*.bin')) | |
paths = [path for path in paths if '.lfs' not in path.name] | |
return [path.relative_to(curr_dir).as_posix() for path in paths] | |
def reload_custom_diffusion_weight_list() -> dict: | |
return gr.update(choices=find_weight_files()) | |
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks: | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
base_model = gr.Dropdown( | |
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'], | |
value='CompVis/stable-diffusion-v1-4', | |
label='Base Model', | |
visible=True) | |
resolution = gr.Dropdown(choices=[512, 768], | |
value=512, | |
label='Resolution', | |
visible=True) | |
reload_button = gr.Button('Reload Weight List') | |
weight_name = gr.Dropdown(choices=find_weight_files(), | |
value='custom-diffusion-models/cat.bin', | |
label='Custom Diffusion Weight File') | |
prompt = gr.Textbox( | |
label='Prompt', | |
max_lines=1, | |
placeholder='Example: "\<new1\> cat in outer space"') | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=100000, | |
step=1, | |
value=42) | |
with gr.Accordion('Other Parameters', open=False): | |
num_steps = gr.Slider(label='Number of Steps', | |
minimum=0, | |
maximum=500, | |
step=1, | |
value=200) | |
guidance_scale = gr.Slider(label='CFG Scale', | |
minimum=0, | |
maximum=50, | |
step=0.1, | |
value=6) | |
eta = gr.Slider(label='DDIM eta', | |
minimum=0, | |
maximum=1., | |
step=0.1, | |
value=1.) | |
batch_size = gr.Slider(label='Batch Size', | |
minimum=0, | |
maximum=10., | |
step=1, | |
value=2) | |
run_button = gr.Button('Generate') | |
gr.Markdown(''' | |
- Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models. | |
- After training, you can press "Reload Weight List" button to load your trained model names. | |
- Change default batch-size and steps for faster sampling. | |
''') | |
with gr.Column(): | |
result = gr.Image(label='Result') | |
reload_button.click(fn=reload_custom_diffusion_weight_list, | |
inputs=None, | |
outputs=weight_name) | |
prompt.submit(fn=pipe.run, | |
inputs=[ | |
base_model, | |
weight_name, | |
prompt, | |
seed, | |
num_steps, | |
guidance_scale, | |
eta, | |
batch_size, | |
resolution | |
], | |
outputs=result, | |
queue=False) | |
run_button.click(fn=pipe.run, | |
inputs=[ | |
base_model, | |
weight_name, | |
prompt, | |
seed, | |
num_steps, | |
guidance_scale, | |
eta, | |
batch_size, | |
resolution | |
], | |
outputs=result, | |
queue=False) | |
return demo | |
def create_upload_demo() -> gr.Blocks: | |
with gr.Blocks() as demo: | |
model_name = gr.Textbox(label='Model Name') | |
hf_token = gr.Textbox( | |
label='Hugging Face Token (with write permission)') | |
upload_button = gr.Button('Upload') | |
with gr.Box(): | |
gr.Markdown('Message') | |
result = gr.Markdown() | |
gr.Markdown(''' | |
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}). | |
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens). | |
''') | |
upload_button.click(fn=upload, | |
inputs=[model_name, hf_token], | |
outputs=result) | |
return demo | |
pipe = InferencePipeline() | |
trainer = Trainer() | |
with gr.Blocks(css='style.css') as demo: | |
if os.getenv('IS_SHARED_UI'): | |
show_warning(SHARED_UI_WARNING) | |
if not torch.cuda.is_available(): | |
show_warning(CUDA_NOT_AVAILABLE_WARNING) | |
gr.Markdown(TITLE) | |
gr.Markdown(DESCRIPTION) | |
gr.Markdown(DETAILDESCRIPTION) | |
with gr.Tabs(): | |
with gr.TabItem('Train'): | |
create_training_demo(trainer, pipe) | |
with gr.TabItem('Test'): | |
create_inference_demo(pipe) | |
with gr.TabItem('Upload'): | |
create_upload_demo() | |
demo.queue(default_enabled=False).launch(share=False) | |