File size: 11,897 Bytes
3efa0f6 107040a 5eee39d 107040a 97e39c4 107040a 5d9aca7 107040a 97e39c4 107040a 34b01d1 107040a 97e39c4 107040a f95120a 107040a 97e39c4 107040a 97e39c4 107040a 97e39c4 107040a 97e39c4 107040a 97e39c4 107040a 97e39c4 107040a 97e39c4 107040a 97e39c4 107040a 5d9aca7 107040a 97e39c4 107040a 97e39c4 107040a 5d9aca7 107040a 5d9aca7 107040a 46bdce3 abefa49 46bdce3 abefa49 107040a f5a0f26 5eee39d 107040a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import spaces
from types import MethodType
import os
import gradio as gr
import torch
import cv2
from annotator.util import resize_image
from annotator.hed import SOFT_HEDdetector
from annotator.lineart import LineartDetector
from annotator.lineart import LineartDetector
from annotator.canny import CannyDetector
from diffusers import UNet2DConditionModel, ControlNetModel
from transformers import CLIPVisionModelWithProjection
from huggingface_hub import snapshot_download
from PIL import Image
from ip_adapter import StyleShot, StyleContentStableDiffusionControlNetPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
contour_detector = SOFT_HEDdetector()
lineart_detector = LineartDetector()
canny_detector = CannyDetector()
base_model_path = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
transformer_block_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
styleshot_model_path = "Gaojunyao/StyleShot"
styleshot_lineart_model_path = "Gaojunyao/StyleShot_lineart"
if not os.path.isdir(base_model_path):
base_model_path = snapshot_download(base_model_path, local_dir=base_model_path)
print(f"Downloaded model to {base_model_path}")
if not os.path.isdir(transformer_block_path):
transformer_block_path = snapshot_download(transformer_block_path, local_dir=transformer_block_path)
print(f"Downloaded model to {transformer_block_path}")
if not os.path.isdir(styleshot_model_path):
styleshot_model_path = snapshot_download(styleshot_model_path, local_dir=styleshot_model_path)
print(f"Downloaded model to {styleshot_model_path}")
if not os.path.isdir(styleshot_lineart_model_path):
styleshot_lineart_model_path = snapshot_download(styleshot_lineart_model_path, local_dir=styleshot_lineart_model_path)
print(f"Downloaded model to {styleshot_lineart_model_path}")
# weights for ip-adapter and our content-fusion encoder
contour_ip_ckpt = os.path.join(styleshot_model_path, "pretrained_weight/ip.bin")
contour_style_aware_encoder_path = os.path.join(styleshot_model_path, "pretrained_weight/style_aware_encoder.bin")
contour_transformer_block_path = transformer_block_path
contour_unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet")
contour_content_fusion_encoder = ControlNetModel.from_unet(contour_unet)
contour_pipe = StyleContentStableDiffusionControlNetPipeline.from_pretrained(base_model_path, controlnet=contour_content_fusion_encoder)
contour_styleshot = StyleShot(device, contour_pipe, contour_ip_ckpt, contour_style_aware_encoder_path, contour_transformer_block_path)
# weights for ip-adapter and our content-fusion encoder
canny_ip_ckpt = os.path.join(styleshot_model_path, "pretrained_weight/ip.bin")
canny_style_aware_encoder_path = os.path.join(styleshot_model_path, "pretrained_weight/style_aware_encoder.bin")
canny_transformer_block_path = transformer_block_path
canny_unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet")
canny_content_fusion_encoder = ControlNetModel.from_unet(canny_unet)
canny_pipe = StyleContentStableDiffusionControlNetPipeline.from_pretrained(base_model_path, controlnet=canny_content_fusion_encoder)
canny_styleshot = StyleShot(device, canny_pipe, canny_ip_ckpt, canny_style_aware_encoder_path, canny_transformer_block_path)
lineart_ip_ckpt = os.path.join(styleshot_lineart_model_path, "pretrained_weight/ip.bin")
lineart_style_aware_encoder_path = os.path.join(styleshot_lineart_model_path, "pretrained_weight/style_aware_encoder.bin")
lineart_transformer_block_path = transformer_block_path
lineart_unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet")
lineart_content_fusion_encoder = ControlNetModel.from_unet(lineart_unet)
lineart_pipe = StyleContentStableDiffusionControlNetPipeline.from_pretrained(base_model_path, controlnet=lineart_content_fusion_encoder)
lineart_styleshot = StyleShot(device, lineart_pipe, lineart_ip_ckpt, lineart_style_aware_encoder_path, lineart_transformer_block_path)
@spaces.GPU(duration=150)
def process(style_image, content_image, prompt, num_samples, image_resolution, condition_scale, style_scale,ddim_steps, guidance_scale, seed, a_prompt, n_prompt, btn1, Contour_Threshold=200):
weight_dtype = torch.float32
style_shots = []
btns = []
contour_content_images = []
contour_results = []
canny_content_images = []
canny_results = []
lineart_content_images = []
lineart_results = []
type1 = 'Contour'
type2 = 'Lineart'
type3 = 'Canny'
if btn1 == type1 or content_image is None:
style_shots = [contour_styleshot]
btns = [type1]
elif btn1 == type2:
style_shots = [lineart_styleshot]
btns = [type2]
elif btn1 == type3:
style_shots = [canny_styleshot]
btns = [type3]
elif btn1 == "Both":
style_shots = [contour_styleshot, lineart_styleshot, canny_styleshot]
btns = [type1, type2, type3]
ori_style_image = style_image.copy()
if content_image is not None:
ori_content_image = content_image.copy()
else:
ori_content_image = None
for styleshot, btn in zip(style_shots, btns):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
prompts = [prompt+" "+a_prompt]
style_image = Image.fromarray(ori_style_image)
if ori_content_image is not None:
if btn == type1:
content_image = resize_image(ori_content_image, image_resolution)
content_image = contour_detector(content_image, threshold=Contour_Threshold)
elif btn == type2:
content_image = resize_image(ori_content_image, image_resolution)
content_image = lineart_detector(content_image, coarse=False)
elif btn == type3:
content_image = resize_image(ori_content_image, image_resolution)
content_image = canny_detector(content_image)
content_image = Image.fromarray(content_image)
else:
content_image = cv2.resize(ori_style_image, (image_resolution, image_resolution))
content_image = Image.fromarray(content_image)
condition_scale = 0.0
g_images = styleshot.generate(style_image=style_image,
prompt=[[prompt]],
negative_prompt=n_prompt,
scale=style_scale,
num_samples = num_samples,
seed = seed,
num_inference_steps=ddim_steps,
guidance_scale=guidance_scale,
content_image=content_image,
controlnet_conditioning_scale= float(condition_scale))
if btn == type1:
contour_content_images = [content_image]
contour_results = g_images[0]
elif btn == type2:
lineart_content_images = [content_image]
lineart_results = g_images[0]
elif btn == type3:
canny_content_images = [content_image]
canny_results = g_images[0]
if ori_content_image is None:
contour_content_images = []
lineart_results = []
lineart_content_images = []
canny_results = []
canny_content_images = []
return [contour_results, contour_content_images, lineart_results, lineart_content_images, canny_results, canny_content_images]
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Styleshot Demo")
with gr.Row():
with gr.Column():
style_image = gr.Image(sources=['upload'], type="numpy", label='Style Image')
with gr.Column():
with gr.Blocks():
with gr.Column():
content_image = gr.Image(sources=['upload'], type="numpy", label='Content Image (optional)')
btn1 = gr.Radio(
choices=["Contour", "Lineart", "Canny", "All"],
interactive=True,
label="Preprocessor",
value="All",
)
gr.Markdown("We recommend using 'Contour' for sparse control and 'Lineart' for detailed control. If you choose 'Both', we will provide results for two types of control. If you choose 'Contour', you can adjust the 'Contour Threshold' under the 'Advanced options' for the level of detail in control. ")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=4, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
condition_scale = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
Contour_Threshold = gr.Slider(label="Contour Threshold", minimum=0, maximum=255, value=200, step=1)
style_scale = gr.Slider(label="Style Strength", minimum=0, maximum=2, value=1.0, step=0.01)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=42, step=1)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Row():
gr.Markdown("### Results for Contour")
with gr.Row():
with gr.Blocks():
with gr.Row():
with gr.Column(scale = 1):
contour_gallery = gr.Gallery(label='Contour Output', show_label=True, elem_id="gallery", columns=[1], rows=[1], height='auto')
with gr.Column(scale = 4):
image_gallery = gr.Gallery(label='Result for Contour', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto')
with gr.Row():
gr.Markdown("### Results for Lineart")
with gr.Row():
with gr.Blocks():
with gr.Row():
with gr.Column(scale = 1):
line_gallery = gr.Gallery(label='Lineart Output', show_label=True, elem_id="gallery", columns=[1], rows=[1], height='auto')
with gr.Column(scale = 4):
line_image_gallery = gr.Gallery(label='Result for Lineart', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto')
with gr.Row():
gr.Markdown("### Results for Canny")
with gr.Row():
with gr.Blocks():
with gr.Row():
with gr.Column(scale = 1):
canny_gallery = gr.Gallery(label='Canny Output', show_label=True, elem_id="gallery", columns=[1], rows=[1], height='auto')
with gr.Column(scale = 4):
canny_image_gallery = gr.Gallery(label='Result for Canny', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto')
ips = [style_image, content_image, prompt, num_samples, image_resolution, condition_scale, style_scale, ddim_steps, guidance_scale, seed, a_prompt, n_prompt, btn1, Contour_Threshold]
run_button.click(fn=process, inputs=ips, outputs=[image_gallery, contour_gallery, line_image_gallery, line_gallery, canny_image_gallery, canny_gallery])
block.launch(server_name='0.0.0.0')
|