|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import glob |
|
import os |
|
import argparse |
|
import json |
|
import torch |
|
from scipy.io.wavfile import write |
|
from env import AttrDict |
|
from meldataset import mel_spectrogram, MAX_WAV_VALUE |
|
from models import BigVGAN as Generator |
|
import librosa |
|
|
|
h = None |
|
device = None |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
def load_checkpoint(filepath, device): |
|
assert os.path.isfile(filepath) |
|
print("Loading '{}'".format(filepath)) |
|
checkpoint_dict = torch.load(filepath, map_location=device) |
|
print("Complete.") |
|
return checkpoint_dict |
|
|
|
|
|
def get_mel(x): |
|
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax) |
|
|
|
|
|
def scan_checkpoint(cp_dir, prefix): |
|
pattern = os.path.join(cp_dir, prefix + '*') |
|
cp_list = glob.glob(pattern) |
|
if len(cp_list) == 0: |
|
return '' |
|
return sorted(cp_list)[-1] |
|
|
|
|
|
def inference(a, h): |
|
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device) |
|
|
|
state_dict_g = load_checkpoint(a.checkpoint_file, device) |
|
generator.load_state_dict(state_dict_g['generator']) |
|
|
|
filelist = os.listdir(a.input_wavs_dir) |
|
|
|
os.makedirs(a.output_dir, exist_ok=True) |
|
|
|
generator.eval() |
|
generator.remove_weight_norm() |
|
with torch.no_grad(): |
|
for i, filname in enumerate(filelist): |
|
|
|
wav, sr = librosa.load(os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True) |
|
wav = torch.FloatTensor(wav).to(device) |
|
|
|
x = get_mel(wav.unsqueeze(0)) |
|
|
|
y_g_hat = generator(x) |
|
|
|
audio = y_g_hat.squeeze() |
|
audio = audio * MAX_WAV_VALUE |
|
audio = audio.cpu().numpy().astype('int16') |
|
|
|
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated.wav') |
|
write(output_file, h.sampling_rate, audio) |
|
print(output_file) |
|
|
|
|
|
def main(): |
|
print('Initializing Inference Process..') |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--input_wavs_dir', default='test_files') |
|
parser.add_argument('--output_dir', default='generated_files') |
|
parser.add_argument('--checkpoint_file', required=True) |
|
parser.add_argument('--use_cuda_kernel', action='store_true', default=False) |
|
|
|
a = parser.parse_args() |
|
|
|
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json') |
|
with open(config_file) as f: |
|
data = f.read() |
|
|
|
global h |
|
json_config = json.loads(data) |
|
h = AttrDict(json_config) |
|
|
|
torch.manual_seed(h.seed) |
|
global device |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(h.seed) |
|
device = torch.device('cuda') |
|
else: |
|
device = torch.device('cpu') |
|
|
|
inference(a, h) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|