update space demo
Browse files- app.py +14 -44
- bigvgan.py +351 -0
- inference.py +0 -105
- meldataset.py +2 -149
- models.py +0 -955
app.py
CHANGED
@@ -6,8 +6,8 @@ import json
|
|
6 |
import torch
|
7 |
import os
|
8 |
from env import AttrDict
|
9 |
-
from meldataset import
|
10 |
-
from
|
11 |
import librosa
|
12 |
import numpy as np
|
13 |
from utils import plot_spectrogram
|
@@ -35,22 +35,21 @@ def inference_gradio(input, model_choice): # input is audio waveform in [T, cha
|
|
35 |
audio = np.transpose(audio) # transpose to [channel, T] for librosa
|
36 |
audio = audio / MAX_WAV_VALUE # convert int16 to float range used by BigVGAN
|
37 |
|
38 |
-
h = dict_config[model_choice]
|
39 |
model = dict_model[model_choice]
|
40 |
|
41 |
-
if sr != h.sampling_rate: # convert audio to model's sampling rate
|
42 |
-
audio = librosa.resample(audio, orig_sr=sr, target_sr=h.sampling_rate)
|
43 |
if len(audio.shape) == 2: # stereo
|
44 |
audio = librosa.to_mono(audio) # convert to mono if stereo
|
45 |
audio = librosa.util.normalize(audio) * 0.95
|
46 |
|
47 |
output, spec_gen = inference_model(
|
48 |
-
audio,
|
49 |
) # output is generated audio in ndarray, int16
|
50 |
|
51 |
spec_plot_gen = plot_spectrogram(spec_gen)
|
52 |
|
53 |
-
output_audio = (h.sampling_rate, output) # tuple for gr.Audio output
|
54 |
|
55 |
buffer = spec_plot_gen.canvas.buffer_rgba()
|
56 |
output_image = PIL.Image.frombuffer(
|
@@ -67,22 +66,19 @@ def inference_gradio(input, model_choice): # input is audio waveform in [T, cha
|
|
67 |
|
68 |
|
69 |
@spaces.GPU(duration=120)
|
70 |
-
def inference_model(audio_input,
|
71 |
# load model to device
|
72 |
model.to(device)
|
73 |
|
74 |
-
def get_mel(x):
|
75 |
-
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
76 |
-
|
77 |
with torch.inference_mode():
|
78 |
wav = torch.FloatTensor(audio_input)
|
79 |
# compute mel spectrogram from the ground truth audio
|
80 |
-
spec_gt =
|
81 |
|
82 |
y_g_hat = model(spec_gt)
|
83 |
|
84 |
audio_gen = y_g_hat.squeeze().cpu()
|
85 |
-
spec_gen =
|
86 |
audio_gen = audio_gen.numpy() # [T], float [-1, 1]
|
87 |
audio_gen = (audio_gen * MAX_WAV_VALUE).astype("int16") # [T], int16
|
88 |
spec_gen = spec_gen.squeeze().numpy() # [C, T_frame]
|
@@ -234,9 +230,7 @@ css = """
|
|
234 |
|
235 |
######################## script for loading the models ########################
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
LIST_MODEL_NAME = [
|
240 |
"bigvgan_24khz_100band",
|
241 |
"bigvgan_base_24khz_100band",
|
242 |
"bigvgan_22khz_80band",
|
@@ -248,41 +242,17 @@ LIST_MODEL_NAME = [
|
|
248 |
"bigvgan_v2_44khz_128band_512x"
|
249 |
]
|
250 |
|
251 |
-
DICT_MODEL_NAME_FILE_PAIRS = {
|
252 |
-
"bigvgan_24khz_100band": "g_05000000",
|
253 |
-
"bigvgan_base_24khz_100band": "g_05000000",
|
254 |
-
"bigvgan_22khz_80band": "g_05000000",
|
255 |
-
"bigvgan_base_22khz_80band": "g_05000000",
|
256 |
-
"bigvgan_v2_22khz_80band_256x": "g_03000000",
|
257 |
-
"bigvgan_v2_22khz_80band_fmax8k_256x": "g_03000000",
|
258 |
-
"bigvgan_v2_24khz_100band_256x": "g_03000000",
|
259 |
-
"bigvgan_v2_44khz_128band_256x": "g_03000000",
|
260 |
-
"bigvgan_v2_44khz_128band_512x": "g_03000000"
|
261 |
-
}
|
262 |
-
|
263 |
dict_model = {}
|
264 |
dict_config = {}
|
265 |
|
266 |
-
for model_name in
|
267 |
-
model_file = hf_hub_download(MODEL_PATH, f"{model_name}/{DICT_MODEL_NAME_FILE_PAIRS[model_name]}", use_auth_token=os.environ['TOKEN'])
|
268 |
-
config_file = hf_hub_download(MODEL_PATH, f"{model_name}/config.json", use_auth_token=os.environ['TOKEN'])
|
269 |
-
|
270 |
-
with open(config_file) as f:
|
271 |
-
data = f.read()
|
272 |
-
|
273 |
-
json_config = json.loads(data)
|
274 |
-
h = AttrDict(json_config)
|
275 |
-
|
276 |
-
torch.manual_seed(h.seed)
|
277 |
|
278 |
-
generator =
|
279 |
-
state_dict_g = load_checkpoint(model_file)
|
280 |
-
generator.load_state_dict(state_dict_g['generator'])
|
281 |
generator.eval()
|
282 |
generator.remove_weight_norm()
|
283 |
|
284 |
dict_model[model_name] = generator
|
285 |
-
dict_config[model_name] = h
|
286 |
|
287 |
######################## script for gradio UI ########################
|
288 |
|
@@ -338,7 +308,7 @@ with iface:
|
|
338 |
model_choice = gr.Dropdown(
|
339 |
label="Select the model. Default: bigvgan_v2_24khz_100band_256x",
|
340 |
value="bigvgan_v2_24khz_100band_256x",
|
341 |
-
choices=[m for m in
|
342 |
interactive=True,
|
343 |
)
|
344 |
|
|
|
6 |
import torch
|
7 |
import os
|
8 |
from env import AttrDict
|
9 |
+
from meldataset import get_mel_spectrogram, MAX_WAV_VALUE
|
10 |
+
from bigvgan import BigVGAN
|
11 |
import librosa
|
12 |
import numpy as np
|
13 |
from utils import plot_spectrogram
|
|
|
35 |
audio = np.transpose(audio) # transpose to [channel, T] for librosa
|
36 |
audio = audio / MAX_WAV_VALUE # convert int16 to float range used by BigVGAN
|
37 |
|
|
|
38 |
model = dict_model[model_choice]
|
39 |
|
40 |
+
if sr != model.h.sampling_rate: # convert audio to model's sampling rate
|
41 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=model.h.sampling_rate)
|
42 |
if len(audio.shape) == 2: # stereo
|
43 |
audio = librosa.to_mono(audio) # convert to mono if stereo
|
44 |
audio = librosa.util.normalize(audio) * 0.95
|
45 |
|
46 |
output, spec_gen = inference_model(
|
47 |
+
audio, model
|
48 |
) # output is generated audio in ndarray, int16
|
49 |
|
50 |
spec_plot_gen = plot_spectrogram(spec_gen)
|
51 |
|
52 |
+
output_audio = (model.h.sampling_rate, output) # tuple for gr.Audio output
|
53 |
|
54 |
buffer = spec_plot_gen.canvas.buffer_rgba()
|
55 |
output_image = PIL.Image.frombuffer(
|
|
|
66 |
|
67 |
|
68 |
@spaces.GPU(duration=120)
|
69 |
+
def inference_model(audio_input, model):
|
70 |
# load model to device
|
71 |
model.to(device)
|
72 |
|
|
|
|
|
|
|
73 |
with torch.inference_mode():
|
74 |
wav = torch.FloatTensor(audio_input)
|
75 |
# compute mel spectrogram from the ground truth audio
|
76 |
+
spec_gt = get_mel_spectrogram(wav.unsqueeze(0), model.h).to(device)
|
77 |
|
78 |
y_g_hat = model(spec_gt)
|
79 |
|
80 |
audio_gen = y_g_hat.squeeze().cpu()
|
81 |
+
spec_gen = get_mel_spectrogram(audio_gen.unsqueeze(0))
|
82 |
audio_gen = audio_gen.numpy() # [T], float [-1, 1]
|
83 |
audio_gen = (audio_gen * MAX_WAV_VALUE).astype("int16") # [T], int16
|
84 |
spec_gen = spec_gen.squeeze().numpy() # [C, T_frame]
|
|
|
230 |
|
231 |
######################## script for loading the models ########################
|
232 |
|
233 |
+
LIST_MODEL_ID = [
|
|
|
|
|
234 |
"bigvgan_24khz_100band",
|
235 |
"bigvgan_base_24khz_100band",
|
236 |
"bigvgan_22khz_80band",
|
|
|
242 |
"bigvgan_v2_44khz_128band_512x"
|
243 |
]
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
dict_model = {}
|
246 |
dict_config = {}
|
247 |
|
248 |
+
for model_name in LIST_MODEL_ID:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
generator = BigVGAN.from_pretrained('nvidia/'+model_name, token=os.environ['TOKEN'])
|
|
|
|
|
251 |
generator.eval()
|
252 |
generator.remove_weight_norm()
|
253 |
|
254 |
dict_model[model_name] = generator
|
255 |
+
dict_config[model_name] = generator.h
|
256 |
|
257 |
######################## script for gradio UI ########################
|
258 |
|
|
|
308 |
model_choice = gr.Dropdown(
|
309 |
label="Select the model. Default: bigvgan_v2_24khz_100band_256x",
|
310 |
value="bigvgan_v2_24khz_100band_256x",
|
311 |
+
choices=[m for m in LIST_MODEL_ID],
|
312 |
interactive=True,
|
313 |
)
|
314 |
|
bigvgan.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
from collections import namedtuple
|
12 |
+
from typing import Optional, List, Union, Dict
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torch.nn as nn
|
17 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
18 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
19 |
+
|
20 |
+
import activations
|
21 |
+
from utils import init_weights, get_padding
|
22 |
+
from alias_free_torch.act import Activation1d as TorchActivation1d
|
23 |
+
from env import AttrDict
|
24 |
+
|
25 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
26 |
+
|
27 |
+
def load_hparams_from_json(path) -> AttrDict:
|
28 |
+
with open(path) as f:
|
29 |
+
data = f.read()
|
30 |
+
h = json.loads(data)
|
31 |
+
return AttrDict(h)
|
32 |
+
|
33 |
+
class AMPBlock1(torch.nn.Module):
|
34 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
35 |
+
super(AMPBlock1, self).__init__()
|
36 |
+
self.h = h
|
37 |
+
|
38 |
+
self.convs1 = nn.ModuleList([
|
39 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
40 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
41 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
42 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
44 |
+
padding=get_padding(kernel_size, dilation[2])))
|
45 |
+
])
|
46 |
+
self.convs1.apply(init_weights)
|
47 |
+
|
48 |
+
self.convs2 = nn.ModuleList([
|
49 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
50 |
+
padding=get_padding(kernel_size, 1))),
|
51 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
52 |
+
padding=get_padding(kernel_size, 1))),
|
53 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
54 |
+
padding=get_padding(kernel_size, 1)))
|
55 |
+
])
|
56 |
+
self.convs2.apply(init_weights)
|
57 |
+
|
58 |
+
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
59 |
+
|
60 |
+
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
61 |
+
if self.h.get("use_cuda_kernel", False):
|
62 |
+
# faster CUDA kernel implementation of Activation1d
|
63 |
+
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
64 |
+
Activation1d = CudaActivation1d
|
65 |
+
else:
|
66 |
+
Activation1d = TorchActivation1d
|
67 |
+
|
68 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
69 |
+
self.activations = nn.ModuleList([
|
70 |
+
Activation1d(
|
71 |
+
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
72 |
+
for _ in range(self.num_layers)
|
73 |
+
])
|
74 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
75 |
+
self.activations = nn.ModuleList([
|
76 |
+
Activation1d(
|
77 |
+
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
78 |
+
for _ in range(self.num_layers)
|
79 |
+
])
|
80 |
+
else:
|
81 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
85 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
86 |
+
xt = a1(x)
|
87 |
+
xt = c1(xt)
|
88 |
+
xt = a2(xt)
|
89 |
+
xt = c2(xt)
|
90 |
+
x = xt + x
|
91 |
+
|
92 |
+
return x
|
93 |
+
|
94 |
+
def remove_weight_norm(self):
|
95 |
+
for l in self.convs1:
|
96 |
+
remove_weight_norm(l)
|
97 |
+
for l in self.convs2:
|
98 |
+
remove_weight_norm(l)
|
99 |
+
|
100 |
+
|
101 |
+
class AMPBlock2(torch.nn.Module):
|
102 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
103 |
+
super(AMPBlock2, self).__init__()
|
104 |
+
self.h = h
|
105 |
+
|
106 |
+
self.convs = nn.ModuleList([
|
107 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
108 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
109 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
110 |
+
padding=get_padding(kernel_size, dilation[1])))
|
111 |
+
])
|
112 |
+
self.convs.apply(init_weights)
|
113 |
+
|
114 |
+
self.num_layers = len(self.convs) # total number of conv layers
|
115 |
+
|
116 |
+
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
117 |
+
if self.h.get("use_cuda_kernel", False):
|
118 |
+
# faster CUDA kernel implementation of Activation1d
|
119 |
+
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
120 |
+
Activation1d = CudaActivation1d
|
121 |
+
else:
|
122 |
+
Activation1d = TorchActivation1d
|
123 |
+
|
124 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
125 |
+
self.activations = nn.ModuleList([
|
126 |
+
Activation1d(
|
127 |
+
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
128 |
+
for _ in range(self.num_layers)
|
129 |
+
])
|
130 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
131 |
+
self.activations = nn.ModuleList([
|
132 |
+
Activation1d(
|
133 |
+
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
134 |
+
for _ in range(self.num_layers)
|
135 |
+
])
|
136 |
+
else:
|
137 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
138 |
+
|
139 |
+
def forward(self, x):
|
140 |
+
for c, a in zip (self.convs, self.activations):
|
141 |
+
xt = a(x)
|
142 |
+
xt = c(xt)
|
143 |
+
x = xt + x
|
144 |
+
|
145 |
+
return x
|
146 |
+
|
147 |
+
def remove_weight_norm(self):
|
148 |
+
for l in self.convs:
|
149 |
+
remove_weight_norm(l)
|
150 |
+
|
151 |
+
|
152 |
+
class BigVGAN(
|
153 |
+
torch.nn.Module,
|
154 |
+
PyTorchModelHubMixin,
|
155 |
+
library_name="bigvgan",
|
156 |
+
repo_url="https://github.com/NVIDIA/BigVGAN",
|
157 |
+
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
158 |
+
pipeline_tag="audio-to-audio",
|
159 |
+
license="mit",
|
160 |
+
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"]
|
161 |
+
):
|
162 |
+
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
163 |
+
# New in v2: if use_cuda_kernel is set to True, it loads optimized CUDA kernels for AMP.
|
164 |
+
# NOTE: use_cuda_kernel=True should be used for inference only (training is not supported).
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
h,
|
168 |
+
use_cuda_kernel: bool=False
|
169 |
+
):
|
170 |
+
super(BigVGAN, self).__init__()
|
171 |
+
self.h = h
|
172 |
+
self.h["use_cuda_kernel"] = use_cuda_kernel # add it to global hyperparameters (h)
|
173 |
+
|
174 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
175 |
+
self.num_upsamples = len(h.upsample_rates)
|
176 |
+
|
177 |
+
# pre conv
|
178 |
+
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
179 |
+
|
180 |
+
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
181 |
+
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
182 |
+
|
183 |
+
# transposed conv-based upsamplers. does not apply anti-aliasing
|
184 |
+
self.ups = nn.ModuleList()
|
185 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
186 |
+
self.ups.append(nn.ModuleList([
|
187 |
+
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
188 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
189 |
+
k, u, padding=(k - u) // 2))
|
190 |
+
]))
|
191 |
+
|
192 |
+
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
193 |
+
self.resblocks = nn.ModuleList()
|
194 |
+
for i in range(len(self.ups)):
|
195 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
196 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
197 |
+
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
198 |
+
|
199 |
+
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
200 |
+
if self.h.get("use_cuda_kernel", False):
|
201 |
+
# faster CUDA kernel implementation of Activation1d
|
202 |
+
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
203 |
+
Activation1d = CudaActivation1d
|
204 |
+
else:
|
205 |
+
Activation1d = TorchActivation1d
|
206 |
+
|
207 |
+
# post conv
|
208 |
+
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
209 |
+
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
210 |
+
self.activation_post = Activation1d(activation=activation_post)
|
211 |
+
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
212 |
+
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
213 |
+
self.activation_post = Activation1d(activation=activation_post)
|
214 |
+
else:
|
215 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
216 |
+
|
217 |
+
# whether to use bias for the final conv_post. Defaults to True for backward compatibility
|
218 |
+
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
219 |
+
self.conv_post = weight_norm(Conv1d(
|
220 |
+
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final
|
221 |
+
))
|
222 |
+
|
223 |
+
# weight initialization
|
224 |
+
for i in range(len(self.ups)):
|
225 |
+
self.ups[i].apply(init_weights)
|
226 |
+
self.conv_post.apply(init_weights)
|
227 |
+
|
228 |
+
# final tanh activation. Defaults to True for backward compatibility
|
229 |
+
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
230 |
+
|
231 |
+
def forward(self, x):
|
232 |
+
# pre conv
|
233 |
+
x = self.conv_pre(x)
|
234 |
+
|
235 |
+
for i in range(self.num_upsamples):
|
236 |
+
# upsampling
|
237 |
+
for i_up in range(len(self.ups[i])):
|
238 |
+
x = self.ups[i][i_up](x)
|
239 |
+
# AMP blocks
|
240 |
+
xs = None
|
241 |
+
for j in range(self.num_kernels):
|
242 |
+
if xs is None:
|
243 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
244 |
+
else:
|
245 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
246 |
+
x = xs / self.num_kernels
|
247 |
+
|
248 |
+
# post conv
|
249 |
+
x = self.activation_post(x)
|
250 |
+
x = self.conv_post(x)
|
251 |
+
# final tanh activation
|
252 |
+
if self.use_tanh_at_final:
|
253 |
+
x = torch.tanh(x)
|
254 |
+
else:
|
255 |
+
x = torch.clamp(x, min=-1., max=1.) # bound the output to [-1, 1]
|
256 |
+
|
257 |
+
return x
|
258 |
+
|
259 |
+
def remove_weight_norm(self):
|
260 |
+
print('Removing weight norm...')
|
261 |
+
for l in self.ups:
|
262 |
+
for l_i in l:
|
263 |
+
remove_weight_norm(l_i)
|
264 |
+
for l in self.resblocks:
|
265 |
+
l.remove_weight_norm()
|
266 |
+
remove_weight_norm(self.conv_pre)
|
267 |
+
remove_weight_norm(self.conv_post)
|
268 |
+
|
269 |
+
##################################################################
|
270 |
+
# additional methods for huggingface_hub support
|
271 |
+
##################################################################
|
272 |
+
def _save_pretrained(self, save_directory: Path) -> None:
|
273 |
+
"""Save weights and config.json from a Pytorch model to a local directory."""
|
274 |
+
|
275 |
+
model_path = save_directory / 'bigvgan_generator.pt'
|
276 |
+
torch.save(
|
277 |
+
{'generator': self.state_dict()},
|
278 |
+
model_path
|
279 |
+
)
|
280 |
+
|
281 |
+
config_path = save_directory / 'config.json'
|
282 |
+
with open(config_path, 'w') as config_file:
|
283 |
+
json.dump(self.h, config_file, indent=4)
|
284 |
+
|
285 |
+
@classmethod
|
286 |
+
def _from_pretrained(
|
287 |
+
cls,
|
288 |
+
*,
|
289 |
+
model_id: str,
|
290 |
+
revision: str,
|
291 |
+
cache_dir: str,
|
292 |
+
force_download: bool,
|
293 |
+
proxies: Optional[Dict],
|
294 |
+
resume_download: bool,
|
295 |
+
local_files_only: bool,
|
296 |
+
token: Union[str, bool, None],
|
297 |
+
map_location: str = "cpu", # additional argument
|
298 |
+
strict: bool = False, # additional argument
|
299 |
+
use_cuda_kernel: bool = False,
|
300 |
+
**model_kwargs,
|
301 |
+
):
|
302 |
+
"""Load Pytorch pretrained weights and return the loaded model."""
|
303 |
+
|
304 |
+
##################################################################
|
305 |
+
# download and load hyperparameters (h) used by BigVGAN
|
306 |
+
##################################################################
|
307 |
+
config_file = hf_hub_download(
|
308 |
+
repo_id=model_id,
|
309 |
+
filename='config.json',
|
310 |
+
revision=revision,
|
311 |
+
cache_dir=cache_dir,
|
312 |
+
force_download=force_download,
|
313 |
+
proxies=proxies,
|
314 |
+
resume_download=resume_download,
|
315 |
+
token=token,
|
316 |
+
local_files_only=local_files_only,
|
317 |
+
)
|
318 |
+
h = load_hparams_from_json(config_file)
|
319 |
+
|
320 |
+
##################################################################
|
321 |
+
# instantiate BigVGAN using h
|
322 |
+
##################################################################
|
323 |
+
if use_cuda_kernel:
|
324 |
+
print(f"[INFO] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!")
|
325 |
+
print(f"[INFO] You need nvcc and ninja installed in your system to build the kernel. For detail, see: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis")
|
326 |
+
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
327 |
+
|
328 |
+
##################################################################
|
329 |
+
# download and load pretrained generator weight
|
330 |
+
##################################################################
|
331 |
+
if os.path.isdir(model_id):
|
332 |
+
print("Loading weights from local directory")
|
333 |
+
model_file = os.path.join(model_id, 'bigvgan_generator.pt')
|
334 |
+
else:
|
335 |
+
print(f"Downloading weights from {model_id}")
|
336 |
+
model_file = hf_hub_download(
|
337 |
+
repo_id=model_id,
|
338 |
+
filename='bigvgan_generator.pt',
|
339 |
+
revision=revision,
|
340 |
+
cache_dir=cache_dir,
|
341 |
+
force_download=force_download,
|
342 |
+
proxies=proxies,
|
343 |
+
resume_download=resume_download,
|
344 |
+
token=token,
|
345 |
+
local_files_only=local_files_only,
|
346 |
+
)
|
347 |
+
|
348 |
+
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
349 |
+
model.load_state_dict(checkpoint_dict['generator'])
|
350 |
+
|
351 |
+
return model
|
inference.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
2 |
-
# LICENSE is in incl_licenses directory.
|
3 |
-
|
4 |
-
from __future__ import absolute_import, division, print_function, unicode_literals
|
5 |
-
|
6 |
-
import glob
|
7 |
-
import os
|
8 |
-
import argparse
|
9 |
-
import json
|
10 |
-
import torch
|
11 |
-
from scipy.io.wavfile import write
|
12 |
-
from env import AttrDict
|
13 |
-
from meldataset import mel_spectrogram, MAX_WAV_VALUE
|
14 |
-
from models import BigVGAN as Generator
|
15 |
-
import librosa
|
16 |
-
|
17 |
-
h = None
|
18 |
-
device = None
|
19 |
-
torch.backends.cudnn.benchmark = False
|
20 |
-
|
21 |
-
|
22 |
-
def load_checkpoint(filepath, device):
|
23 |
-
assert os.path.isfile(filepath)
|
24 |
-
print("Loading '{}'".format(filepath))
|
25 |
-
checkpoint_dict = torch.load(filepath, map_location=device)
|
26 |
-
print("Complete.")
|
27 |
-
return checkpoint_dict
|
28 |
-
|
29 |
-
|
30 |
-
def get_mel(x):
|
31 |
-
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
32 |
-
|
33 |
-
|
34 |
-
def scan_checkpoint(cp_dir, prefix):
|
35 |
-
pattern = os.path.join(cp_dir, prefix + '*')
|
36 |
-
cp_list = glob.glob(pattern)
|
37 |
-
if len(cp_list) == 0:
|
38 |
-
return ''
|
39 |
-
return sorted(cp_list)[-1]
|
40 |
-
|
41 |
-
|
42 |
-
def inference(a, h):
|
43 |
-
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device)
|
44 |
-
|
45 |
-
state_dict_g = load_checkpoint(a.checkpoint_file, device)
|
46 |
-
generator.load_state_dict(state_dict_g['generator'])
|
47 |
-
|
48 |
-
filelist = os.listdir(a.input_wavs_dir)
|
49 |
-
|
50 |
-
os.makedirs(a.output_dir, exist_ok=True)
|
51 |
-
|
52 |
-
generator.eval()
|
53 |
-
generator.remove_weight_norm()
|
54 |
-
with torch.no_grad():
|
55 |
-
for i, filname in enumerate(filelist):
|
56 |
-
# load the ground truth audio and resample if necessary
|
57 |
-
wav, sr = librosa.load(os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True)
|
58 |
-
wav = torch.FloatTensor(wav).to(device)
|
59 |
-
# compute mel spectrogram from the ground truth audio
|
60 |
-
x = get_mel(wav.unsqueeze(0))
|
61 |
-
|
62 |
-
y_g_hat = generator(x)
|
63 |
-
|
64 |
-
audio = y_g_hat.squeeze()
|
65 |
-
audio = audio * MAX_WAV_VALUE
|
66 |
-
audio = audio.cpu().numpy().astype('int16')
|
67 |
-
|
68 |
-
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated.wav')
|
69 |
-
write(output_file, h.sampling_rate, audio)
|
70 |
-
print(output_file)
|
71 |
-
|
72 |
-
|
73 |
-
def main():
|
74 |
-
print('Initializing Inference Process..')
|
75 |
-
|
76 |
-
parser = argparse.ArgumentParser()
|
77 |
-
parser.add_argument('--input_wavs_dir', default='test_files')
|
78 |
-
parser.add_argument('--output_dir', default='generated_files')
|
79 |
-
parser.add_argument('--checkpoint_file', required=True)
|
80 |
-
parser.add_argument('--use_cuda_kernel', action='store_true', default=False)
|
81 |
-
|
82 |
-
a = parser.parse_args()
|
83 |
-
|
84 |
-
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json')
|
85 |
-
with open(config_file) as f:
|
86 |
-
data = f.read()
|
87 |
-
|
88 |
-
global h
|
89 |
-
json_config = json.loads(data)
|
90 |
-
h = AttrDict(json_config)
|
91 |
-
|
92 |
-
torch.manual_seed(h.seed)
|
93 |
-
global device
|
94 |
-
if torch.cuda.is_available():
|
95 |
-
torch.cuda.manual_seed(h.seed)
|
96 |
-
device = torch.device('cuda')
|
97 |
-
else:
|
98 |
-
device = torch.device('cpu')
|
99 |
-
|
100 |
-
inference(a, h)
|
101 |
-
|
102 |
-
|
103 |
-
if __name__ == '__main__':
|
104 |
-
main()
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meldataset.py
CHANGED
@@ -4,59 +4,37 @@
|
|
4 |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
# LICENSE is in incl_licenses directory.
|
6 |
|
7 |
-
import math
|
8 |
-
import os
|
9 |
-
import random
|
10 |
import torch
|
11 |
import torch.utils.data
|
12 |
import numpy as np
|
13 |
-
from librosa.util import normalize
|
14 |
from scipy.io.wavfile import read
|
15 |
from librosa.filters import mel as librosa_mel_fn
|
16 |
-
import pathlib
|
17 |
-
from tqdm import tqdm
|
18 |
|
19 |
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
20 |
|
21 |
-
|
22 |
-
def load_wav(full_path, sr_target):
|
23 |
-
sampling_rate, data = read(full_path)
|
24 |
-
if sampling_rate != sr_target:
|
25 |
-
raise RuntimeError("Sampling rate of the file {} is {} Hz, but the model requires {} Hz".
|
26 |
-
format(full_path, sampling_rate, sr_target))
|
27 |
-
return data, sampling_rate
|
28 |
-
|
29 |
-
|
30 |
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
31 |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
32 |
|
33 |
-
|
34 |
def dynamic_range_decompression(x, C=1):
|
35 |
return np.exp(x) / C
|
36 |
|
37 |
-
|
38 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
39 |
return torch.log(torch.clamp(x, min=clip_val) * C)
|
40 |
|
41 |
-
|
42 |
def dynamic_range_decompression_torch(x, C=1):
|
43 |
return torch.exp(x) / C
|
44 |
|
45 |
-
|
46 |
def spectral_normalize_torch(magnitudes):
|
47 |
output = dynamic_range_compression_torch(magnitudes)
|
48 |
return output
|
49 |
|
50 |
-
|
51 |
def spectral_de_normalize_torch(magnitudes):
|
52 |
output = dynamic_range_decompression_torch(magnitudes)
|
53 |
return output
|
54 |
|
55 |
-
|
56 |
mel_basis = {}
|
57 |
hann_window = {}
|
58 |
|
59 |
-
|
60 |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
61 |
if torch.min(y) < -1.:
|
62 |
print('min value is ', torch.min(y))
|
@@ -84,130 +62,5 @@ def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin,
|
|
84 |
|
85 |
return spec
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
with open(a.input_training_file, 'r', encoding='utf-8') as fi:
|
90 |
-
training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
91 |
-
for x in fi.read().split('\n') if len(x) > 0]
|
92 |
-
print("first training file: {}".format(training_files[0]))
|
93 |
-
|
94 |
-
with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
|
95 |
-
validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
96 |
-
for x in fi.read().split('\n') if len(x) > 0]
|
97 |
-
print("first validation file: {}".format(validation_files[0]))
|
98 |
-
|
99 |
-
list_unseen_validation_files = []
|
100 |
-
for i in range(len(a.list_input_unseen_validation_file)):
|
101 |
-
with open(a.list_input_unseen_validation_file[i], 'r', encoding='utf-8') as fi:
|
102 |
-
unseen_validation_files = [os.path.join(a.list_input_unseen_wavs_dir[i], x.split('|')[0] + '.wav')
|
103 |
-
for x in fi.read().split('\n') if len(x) > 0]
|
104 |
-
print("first unseen {}th validation fileset: {}".format(i, unseen_validation_files[0]))
|
105 |
-
list_unseen_validation_files.append(unseen_validation_files)
|
106 |
-
|
107 |
-
return training_files, validation_files, list_unseen_validation_files
|
108 |
-
|
109 |
-
|
110 |
-
class MelDataset(torch.utils.data.Dataset):
|
111 |
-
def __init__(self, training_files, hparams, segment_size, n_fft, num_mels,
|
112 |
-
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
|
113 |
-
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, is_seen=True):
|
114 |
-
self.audio_files = training_files
|
115 |
-
random.seed(1234)
|
116 |
-
if shuffle:
|
117 |
-
random.shuffle(self.audio_files)
|
118 |
-
self.hparams = hparams
|
119 |
-
self.is_seen = is_seen
|
120 |
-
if self.is_seen:
|
121 |
-
self.name = pathlib.Path(self.audio_files[0]).parts[0]
|
122 |
-
else:
|
123 |
-
self.name = '-'.join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
|
124 |
-
|
125 |
-
self.segment_size = segment_size
|
126 |
-
self.sampling_rate = sampling_rate
|
127 |
-
self.split = split
|
128 |
-
self.n_fft = n_fft
|
129 |
-
self.num_mels = num_mels
|
130 |
-
self.hop_size = hop_size
|
131 |
-
self.win_size = win_size
|
132 |
-
self.fmin = fmin
|
133 |
-
self.fmax = fmax
|
134 |
-
self.fmax_loss = fmax_loss
|
135 |
-
self.cached_wav = None
|
136 |
-
self.n_cache_reuse = n_cache_reuse
|
137 |
-
self._cache_ref_count = 0
|
138 |
-
self.device = device
|
139 |
-
self.fine_tuning = fine_tuning
|
140 |
-
self.base_mels_path = base_mels_path
|
141 |
-
|
142 |
-
print("INFO: checking dataset integrity...")
|
143 |
-
for i in tqdm(range(len(self.audio_files))):
|
144 |
-
assert os.path.exists(self.audio_files[i]), "{} not found".format(self.audio_files[i])
|
145 |
-
|
146 |
-
def __getitem__(self, index):
|
147 |
-
|
148 |
-
filename = self.audio_files[index]
|
149 |
-
if self._cache_ref_count == 0:
|
150 |
-
audio, sampling_rate = load_wav(filename, self.sampling_rate)
|
151 |
-
audio = audio / MAX_WAV_VALUE
|
152 |
-
if not self.fine_tuning:
|
153 |
-
audio = normalize(audio) * 0.95
|
154 |
-
self.cached_wav = audio
|
155 |
-
if sampling_rate != self.sampling_rate:
|
156 |
-
raise ValueError("{} SR doesn't match target {} SR".format(
|
157 |
-
sampling_rate, self.sampling_rate))
|
158 |
-
self._cache_ref_count = self.n_cache_reuse
|
159 |
-
else:
|
160 |
-
audio = self.cached_wav
|
161 |
-
self._cache_ref_count -= 1
|
162 |
-
|
163 |
-
audio = torch.FloatTensor(audio)
|
164 |
-
audio = audio.unsqueeze(0)
|
165 |
-
|
166 |
-
if not self.fine_tuning:
|
167 |
-
if self.split:
|
168 |
-
if audio.size(1) >= self.segment_size:
|
169 |
-
max_audio_start = audio.size(1) - self.segment_size
|
170 |
-
audio_start = random.randint(0, max_audio_start)
|
171 |
-
audio = audio[:, audio_start:audio_start+self.segment_size]
|
172 |
-
else:
|
173 |
-
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
174 |
-
|
175 |
-
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
176 |
-
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
|
177 |
-
center=False)
|
178 |
-
else: # validation step
|
179 |
-
# match audio length to self.hop_size * n for evaluation
|
180 |
-
if (audio.size(1) % self.hop_size) != 0:
|
181 |
-
audio = audio[:, :-(audio.size(1) % self.hop_size)]
|
182 |
-
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
183 |
-
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
|
184 |
-
center=False)
|
185 |
-
assert audio.shape[1] == mel.shape[2] * self.hop_size, "audio shape {} mel shape {}".format(audio.shape, mel.shape)
|
186 |
-
|
187 |
-
else:
|
188 |
-
mel = np.load(
|
189 |
-
os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy'))
|
190 |
-
mel = torch.from_numpy(mel)
|
191 |
-
|
192 |
-
if len(mel.shape) < 3:
|
193 |
-
mel = mel.unsqueeze(0)
|
194 |
-
|
195 |
-
if self.split:
|
196 |
-
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
197 |
-
|
198 |
-
if audio.size(1) >= self.segment_size:
|
199 |
-
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
200 |
-
mel = mel[:, :, mel_start:mel_start + frames_per_seg]
|
201 |
-
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
|
202 |
-
else:
|
203 |
-
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant')
|
204 |
-
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
205 |
-
|
206 |
-
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
207 |
-
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
|
208 |
-
center=False)
|
209 |
-
|
210 |
-
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
211 |
-
|
212 |
-
def __len__(self):
|
213 |
-
return len(self.audio_files)
|
|
|
4 |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
# LICENSE is in incl_licenses directory.
|
6 |
|
|
|
|
|
|
|
7 |
import torch
|
8 |
import torch.utils.data
|
9 |
import numpy as np
|
|
|
10 |
from scipy.io.wavfile import read
|
11 |
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
|
12 |
|
13 |
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
16 |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
17 |
|
|
|
18 |
def dynamic_range_decompression(x, C=1):
|
19 |
return np.exp(x) / C
|
20 |
|
|
|
21 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
22 |
return torch.log(torch.clamp(x, min=clip_val) * C)
|
23 |
|
|
|
24 |
def dynamic_range_decompression_torch(x, C=1):
|
25 |
return torch.exp(x) / C
|
26 |
|
|
|
27 |
def spectral_normalize_torch(magnitudes):
|
28 |
output = dynamic_range_compression_torch(magnitudes)
|
29 |
return output
|
30 |
|
|
|
31 |
def spectral_de_normalize_torch(magnitudes):
|
32 |
output = dynamic_range_decompression_torch(magnitudes)
|
33 |
return output
|
34 |
|
|
|
35 |
mel_basis = {}
|
36 |
hann_window = {}
|
37 |
|
|
|
38 |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
39 |
if torch.min(y) < -1.:
|
40 |
print('min value is ', torch.min(y))
|
|
|
62 |
|
63 |
return spec
|
64 |
|
65 |
+
def get_mel_spectrogram(wav, h):
|
66 |
+
return mel_spectrogram(wav, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models.py
DELETED
@@ -1,955 +0,0 @@
|
|
1 |
-
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
-
# Licensed under the MIT license.
|
3 |
-
|
4 |
-
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
-
# LICENSE is in incl_licenses directory.
|
6 |
-
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn.functional as F
|
10 |
-
import torch.nn as nn
|
11 |
-
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
-
from torchaudio.transforms import Spectrogram, Resample
|
14 |
-
from librosa.filters import mel as librosa_mel_fn
|
15 |
-
from scipy import signal
|
16 |
-
|
17 |
-
import activations
|
18 |
-
from utils import init_weights, get_padding
|
19 |
-
from alias_free_torch.act import Activation1d as TorchActivation1d
|
20 |
-
import typing
|
21 |
-
from typing import List, Optional, Tuple
|
22 |
-
from collections import namedtuple
|
23 |
-
import math
|
24 |
-
import functools
|
25 |
-
|
26 |
-
|
27 |
-
class AMPBlock1(torch.nn.Module):
|
28 |
-
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
29 |
-
super(AMPBlock1, self).__init__()
|
30 |
-
self.h = h
|
31 |
-
|
32 |
-
self.convs1 = nn.ModuleList([
|
33 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
34 |
-
padding=get_padding(kernel_size, dilation[0]))),
|
35 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
36 |
-
padding=get_padding(kernel_size, dilation[1]))),
|
37 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
38 |
-
padding=get_padding(kernel_size, dilation[2])))
|
39 |
-
])
|
40 |
-
self.convs1.apply(init_weights)
|
41 |
-
|
42 |
-
self.convs2 = nn.ModuleList([
|
43 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
44 |
-
padding=get_padding(kernel_size, 1))),
|
45 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
46 |
-
padding=get_padding(kernel_size, 1))),
|
47 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
48 |
-
padding=get_padding(kernel_size, 1)))
|
49 |
-
])
|
50 |
-
self.convs2.apply(init_weights)
|
51 |
-
|
52 |
-
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
53 |
-
|
54 |
-
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
55 |
-
if self.h.get("use_cuda_kernel", False):
|
56 |
-
# faster CUDA kernel implementation of Activation1d
|
57 |
-
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
58 |
-
Activation1d = CudaActivation1d
|
59 |
-
else:
|
60 |
-
Activation1d = TorchActivation1d
|
61 |
-
|
62 |
-
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
63 |
-
self.activations = nn.ModuleList([
|
64 |
-
Activation1d(
|
65 |
-
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
66 |
-
for _ in range(self.num_layers)
|
67 |
-
])
|
68 |
-
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
69 |
-
self.activations = nn.ModuleList([
|
70 |
-
Activation1d(
|
71 |
-
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
72 |
-
for _ in range(self.num_layers)
|
73 |
-
])
|
74 |
-
else:
|
75 |
-
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
76 |
-
|
77 |
-
def forward(self, x):
|
78 |
-
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
79 |
-
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
80 |
-
xt = a1(x)
|
81 |
-
xt = c1(xt)
|
82 |
-
xt = a2(xt)
|
83 |
-
xt = c2(xt)
|
84 |
-
x = xt + x
|
85 |
-
|
86 |
-
return x
|
87 |
-
|
88 |
-
def remove_weight_norm(self):
|
89 |
-
for l in self.convs1:
|
90 |
-
remove_weight_norm(l)
|
91 |
-
for l in self.convs2:
|
92 |
-
remove_weight_norm(l)
|
93 |
-
|
94 |
-
|
95 |
-
class AMPBlock2(torch.nn.Module):
|
96 |
-
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
97 |
-
super(AMPBlock2, self).__init__()
|
98 |
-
self.h = h
|
99 |
-
|
100 |
-
self.convs = nn.ModuleList([
|
101 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
102 |
-
padding=get_padding(kernel_size, dilation[0]))),
|
103 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
104 |
-
padding=get_padding(kernel_size, dilation[1])))
|
105 |
-
])
|
106 |
-
self.convs.apply(init_weights)
|
107 |
-
|
108 |
-
self.num_layers = len(self.convs) # total number of conv layers
|
109 |
-
|
110 |
-
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
111 |
-
if self.h.get("use_cuda_kernel", False):
|
112 |
-
# faster CUDA kernel implementation of Activation1d
|
113 |
-
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
114 |
-
Activation1d = CudaActivation1d
|
115 |
-
else:
|
116 |
-
Activation1d = TorchActivation1d
|
117 |
-
|
118 |
-
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
119 |
-
self.activations = nn.ModuleList([
|
120 |
-
Activation1d(
|
121 |
-
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
122 |
-
for _ in range(self.num_layers)
|
123 |
-
])
|
124 |
-
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
125 |
-
self.activations = nn.ModuleList([
|
126 |
-
Activation1d(
|
127 |
-
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
128 |
-
for _ in range(self.num_layers)
|
129 |
-
])
|
130 |
-
else:
|
131 |
-
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
132 |
-
|
133 |
-
def forward(self, x):
|
134 |
-
for c, a in zip (self.convs, self.activations):
|
135 |
-
xt = a(x)
|
136 |
-
xt = c(xt)
|
137 |
-
x = xt + x
|
138 |
-
|
139 |
-
return x
|
140 |
-
|
141 |
-
def remove_weight_norm(self):
|
142 |
-
for l in self.convs:
|
143 |
-
remove_weight_norm(l)
|
144 |
-
|
145 |
-
|
146 |
-
class BigVGAN(torch.nn.Module):
|
147 |
-
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
148 |
-
# New in v2: if use_cuda_kernel is set to True, it loads optimized CUDA kernels for AMP.
|
149 |
-
# NOTE: use_cuda_kernel=True should be used for inference only (training is not supported).
|
150 |
-
def __init__(
|
151 |
-
self,
|
152 |
-
h,
|
153 |
-
use_cuda_kernel: bool=False
|
154 |
-
):
|
155 |
-
super(BigVGAN, self).__init__()
|
156 |
-
self.h = h
|
157 |
-
self.h["use_cuda_kernel"] = use_cuda_kernel # add it to global hyperparameters (h)
|
158 |
-
|
159 |
-
self.num_kernels = len(h.resblock_kernel_sizes)
|
160 |
-
self.num_upsamples = len(h.upsample_rates)
|
161 |
-
|
162 |
-
# pre conv
|
163 |
-
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
164 |
-
|
165 |
-
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
166 |
-
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
167 |
-
|
168 |
-
# transposed conv-based upsamplers. does not apply anti-aliasing
|
169 |
-
self.ups = nn.ModuleList()
|
170 |
-
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
171 |
-
self.ups.append(nn.ModuleList([
|
172 |
-
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
173 |
-
h.upsample_initial_channel // (2 ** (i + 1)),
|
174 |
-
k, u, padding=(k - u) // 2))
|
175 |
-
]))
|
176 |
-
|
177 |
-
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
178 |
-
self.resblocks = nn.ModuleList()
|
179 |
-
for i in range(len(self.ups)):
|
180 |
-
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
181 |
-
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
182 |
-
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
183 |
-
|
184 |
-
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
185 |
-
if self.h.get("use_cuda_kernel", False):
|
186 |
-
# faster CUDA kernel implementation of Activation1d
|
187 |
-
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
188 |
-
Activation1d = CudaActivation1d
|
189 |
-
else:
|
190 |
-
Activation1d = TorchActivation1d
|
191 |
-
|
192 |
-
# post conv
|
193 |
-
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
194 |
-
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
195 |
-
self.activation_post = Activation1d(activation=activation_post)
|
196 |
-
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
197 |
-
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
198 |
-
self.activation_post = Activation1d(activation=activation_post)
|
199 |
-
else:
|
200 |
-
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
201 |
-
|
202 |
-
# whether to use bias for the final conv_post. Defaults to True for backward compatibility
|
203 |
-
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
204 |
-
self.conv_post = weight_norm(Conv1d(
|
205 |
-
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final
|
206 |
-
))
|
207 |
-
|
208 |
-
# weight initialization
|
209 |
-
for i in range(len(self.ups)):
|
210 |
-
self.ups[i].apply(init_weights)
|
211 |
-
self.conv_post.apply(init_weights)
|
212 |
-
|
213 |
-
# final tanh activation. Defaults to True for backward compatibility
|
214 |
-
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
215 |
-
|
216 |
-
def forward(self, x):
|
217 |
-
# pre conv
|
218 |
-
x = self.conv_pre(x)
|
219 |
-
|
220 |
-
for i in range(self.num_upsamples):
|
221 |
-
# upsampling
|
222 |
-
for i_up in range(len(self.ups[i])):
|
223 |
-
x = self.ups[i][i_up](x)
|
224 |
-
# AMP blocks
|
225 |
-
xs = None
|
226 |
-
for j in range(self.num_kernels):
|
227 |
-
if xs is None:
|
228 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
229 |
-
else:
|
230 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
231 |
-
x = xs / self.num_kernels
|
232 |
-
|
233 |
-
# post conv
|
234 |
-
x = self.activation_post(x)
|
235 |
-
x = self.conv_post(x)
|
236 |
-
# final tanh activation
|
237 |
-
if self.use_tanh_at_final:
|
238 |
-
x = torch.tanh(x)
|
239 |
-
else:
|
240 |
-
x = torch.clamp(x, min=-1., max=1.) # bound the output to [-1, 1]
|
241 |
-
|
242 |
-
return x
|
243 |
-
|
244 |
-
def remove_weight_norm(self):
|
245 |
-
print('Removing weight norm...')
|
246 |
-
for l in self.ups:
|
247 |
-
for l_i in l:
|
248 |
-
remove_weight_norm(l_i)
|
249 |
-
for l in self.resblocks:
|
250 |
-
l.remove_weight_norm()
|
251 |
-
remove_weight_norm(self.conv_pre)
|
252 |
-
remove_weight_norm(self.conv_post)
|
253 |
-
|
254 |
-
|
255 |
-
class DiscriminatorP(torch.nn.Module):
|
256 |
-
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
257 |
-
super(DiscriminatorP, self).__init__()
|
258 |
-
self.period = period
|
259 |
-
self.d_mult = h.discriminator_channel_mult
|
260 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
261 |
-
self.convs = nn.ModuleList([
|
262 |
-
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
263 |
-
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
264 |
-
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
265 |
-
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
266 |
-
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
|
267 |
-
])
|
268 |
-
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
|
269 |
-
|
270 |
-
def forward(self, x):
|
271 |
-
fmap = []
|
272 |
-
|
273 |
-
# 1d to 2d
|
274 |
-
b, c, t = x.shape
|
275 |
-
if t % self.period != 0: # pad first
|
276 |
-
n_pad = self.period - (t % self.period)
|
277 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
278 |
-
t = t + n_pad
|
279 |
-
x = x.view(b, c, t // self.period, self.period)
|
280 |
-
|
281 |
-
for l in self.convs:
|
282 |
-
x = l(x)
|
283 |
-
x = F.leaky_relu(x, 0.1)
|
284 |
-
fmap.append(x)
|
285 |
-
x = self.conv_post(x)
|
286 |
-
fmap.append(x)
|
287 |
-
x = torch.flatten(x, 1, -1)
|
288 |
-
|
289 |
-
return x, fmap
|
290 |
-
|
291 |
-
|
292 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
293 |
-
def __init__(self, h):
|
294 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
295 |
-
self.mpd_reshapes = h.mpd_reshapes
|
296 |
-
print("mpd_reshapes: {}".format(self.mpd_reshapes))
|
297 |
-
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
|
298 |
-
self.discriminators = nn.ModuleList(discriminators)
|
299 |
-
|
300 |
-
def forward(self, y, y_hat):
|
301 |
-
y_d_rs = []
|
302 |
-
y_d_gs = []
|
303 |
-
fmap_rs = []
|
304 |
-
fmap_gs = []
|
305 |
-
for i, d in enumerate(self.discriminators):
|
306 |
-
y_d_r, fmap_r = d(y)
|
307 |
-
y_d_g, fmap_g = d(y_hat)
|
308 |
-
y_d_rs.append(y_d_r)
|
309 |
-
fmap_rs.append(fmap_r)
|
310 |
-
y_d_gs.append(y_d_g)
|
311 |
-
fmap_gs.append(fmap_g)
|
312 |
-
|
313 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
314 |
-
|
315 |
-
|
316 |
-
class DiscriminatorR(nn.Module):
|
317 |
-
def __init__(self, cfg, resolution):
|
318 |
-
super().__init__()
|
319 |
-
|
320 |
-
self.resolution = resolution
|
321 |
-
assert len(self.resolution) == 3, \
|
322 |
-
"MRD layer requires list with len=3, got {}".format(self.resolution)
|
323 |
-
self.lrelu_slope = 0.1
|
324 |
-
|
325 |
-
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
326 |
-
if hasattr(cfg, "mrd_use_spectral_norm"):
|
327 |
-
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
|
328 |
-
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
329 |
-
self.d_mult = cfg.discriminator_channel_mult
|
330 |
-
if hasattr(cfg, "mrd_channel_mult"):
|
331 |
-
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
|
332 |
-
self.d_mult = cfg.mrd_channel_mult
|
333 |
-
|
334 |
-
self.convs = nn.ModuleList([
|
335 |
-
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))),
|
336 |
-
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
337 |
-
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
338 |
-
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
339 |
-
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))),
|
340 |
-
])
|
341 |
-
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
|
342 |
-
|
343 |
-
def forward(self, x):
|
344 |
-
fmap = []
|
345 |
-
|
346 |
-
x = self.spectrogram(x)
|
347 |
-
x = x.unsqueeze(1)
|
348 |
-
for l in self.convs:
|
349 |
-
x = l(x)
|
350 |
-
x = F.leaky_relu(x, self.lrelu_slope)
|
351 |
-
fmap.append(x)
|
352 |
-
x = self.conv_post(x)
|
353 |
-
fmap.append(x)
|
354 |
-
x = torch.flatten(x, 1, -1)
|
355 |
-
|
356 |
-
return x, fmap
|
357 |
-
|
358 |
-
def spectrogram(self, x):
|
359 |
-
n_fft, hop_length, win_length = self.resolution
|
360 |
-
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
|
361 |
-
x = x.squeeze(1)
|
362 |
-
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
|
363 |
-
x = torch.view_as_real(x) # [B, F, TT, 2]
|
364 |
-
mag = torch.norm(x, p=2, dim =-1) #[B, F, TT]
|
365 |
-
|
366 |
-
return mag
|
367 |
-
|
368 |
-
|
369 |
-
class MultiResolutionDiscriminator(nn.Module):
|
370 |
-
def __init__(self, cfg, debug=False):
|
371 |
-
super().__init__()
|
372 |
-
self.resolutions = cfg.resolutions
|
373 |
-
assert len(self.resolutions) == 3,\
|
374 |
-
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\
|
375 |
-
format(self.resolutions)
|
376 |
-
self.discriminators = nn.ModuleList(
|
377 |
-
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
378 |
-
)
|
379 |
-
|
380 |
-
def forward(self, y, y_hat):
|
381 |
-
y_d_rs = []
|
382 |
-
y_d_gs = []
|
383 |
-
fmap_rs = []
|
384 |
-
fmap_gs = []
|
385 |
-
|
386 |
-
for i, d in enumerate(self.discriminators):
|
387 |
-
y_d_r, fmap_r = d(x=y)
|
388 |
-
y_d_g, fmap_g = d(x=y_hat)
|
389 |
-
y_d_rs.append(y_d_r)
|
390 |
-
fmap_rs.append(fmap_r)
|
391 |
-
y_d_gs.append(y_d_g)
|
392 |
-
fmap_gs.append(fmap_g)
|
393 |
-
|
394 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
395 |
-
|
396 |
-
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
|
397 |
-
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
|
398 |
-
# LICENSE is in incl_licenses directory.
|
399 |
-
class DiscriminatorB(nn.Module):
|
400 |
-
def __init__(
|
401 |
-
self,
|
402 |
-
window_length: int,
|
403 |
-
channels: int = 32,
|
404 |
-
hop_factor: float = 0.25,
|
405 |
-
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
406 |
-
):
|
407 |
-
super().__init__()
|
408 |
-
self.window_length = window_length
|
409 |
-
self.hop_factor = hop_factor
|
410 |
-
self.spec_fn = Spectrogram(
|
411 |
-
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
412 |
-
)
|
413 |
-
n_fft = window_length // 2 + 1
|
414 |
-
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
415 |
-
self.bands = bands
|
416 |
-
convs = lambda: nn.ModuleList(
|
417 |
-
[
|
418 |
-
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
419 |
-
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
420 |
-
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
421 |
-
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
422 |
-
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
423 |
-
]
|
424 |
-
)
|
425 |
-
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
426 |
-
|
427 |
-
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
428 |
-
|
429 |
-
def spectrogram(self, x):
|
430 |
-
# Remove DC offset
|
431 |
-
x = x - x.mean(dim=-1, keepdims=True)
|
432 |
-
# Peak normalize the volume of input audio
|
433 |
-
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
434 |
-
x = self.spec_fn(x)
|
435 |
-
x = torch.view_as_real(x)
|
436 |
-
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F]
|
437 |
-
# Split into bands
|
438 |
-
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
439 |
-
return x_bands
|
440 |
-
|
441 |
-
def forward(self, x: torch.Tensor):
|
442 |
-
x_bands = self.spectrogram(x.squeeze(1))
|
443 |
-
fmap = []
|
444 |
-
x = []
|
445 |
-
|
446 |
-
for band, stack in zip(x_bands, self.band_convs):
|
447 |
-
for i, layer in enumerate(stack):
|
448 |
-
band = layer(band)
|
449 |
-
band = torch.nn.functional.leaky_relu(band, 0.1)
|
450 |
-
if i > 0:
|
451 |
-
fmap.append(band)
|
452 |
-
x.append(band)
|
453 |
-
|
454 |
-
x = torch.cat(x, dim=-1)
|
455 |
-
x = self.conv_post(x)
|
456 |
-
fmap.append(x)
|
457 |
-
|
458 |
-
return x, fmap
|
459 |
-
|
460 |
-
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
|
461 |
-
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
|
462 |
-
# LICENSE is in incl_licenses directory.
|
463 |
-
class MultiBandDiscriminator(nn.Module):
|
464 |
-
def __init__(
|
465 |
-
self,
|
466 |
-
h,
|
467 |
-
):
|
468 |
-
"""
|
469 |
-
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec.
|
470 |
-
and the modified code adapted from https://github.com/gemelo-ai/vocos.
|
471 |
-
"""
|
472 |
-
super().__init__()
|
473 |
-
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h.
|
474 |
-
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512])
|
475 |
-
self.discriminators = nn.ModuleList(
|
476 |
-
[DiscriminatorB(window_length=w) for w in self.fft_sizes]
|
477 |
-
)
|
478 |
-
|
479 |
-
def forward(
|
480 |
-
self,
|
481 |
-
y: torch.Tensor,
|
482 |
-
y_hat: torch.Tensor
|
483 |
-
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
484 |
-
|
485 |
-
y_d_rs = []
|
486 |
-
y_d_gs = []
|
487 |
-
fmap_rs = []
|
488 |
-
fmap_gs = []
|
489 |
-
|
490 |
-
for d in self.discriminators:
|
491 |
-
y_d_r, fmap_r = d(x=y)
|
492 |
-
y_d_g, fmap_g = d(x=y_hat)
|
493 |
-
y_d_rs.append(y_d_r)
|
494 |
-
fmap_rs.append(fmap_r)
|
495 |
-
y_d_gs.append(y_d_g)
|
496 |
-
fmap_gs.append(fmap_g)
|
497 |
-
|
498 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
499 |
-
|
500 |
-
|
501 |
-
# Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license.
|
502 |
-
# LICENSE is in incl_licenses directory.
|
503 |
-
class DiscriminatorCQT(nn.Module):
|
504 |
-
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
|
505 |
-
super().__init__()
|
506 |
-
self.cfg = cfg
|
507 |
-
|
508 |
-
self.filters = cfg["cqtd_filters"]
|
509 |
-
self.max_filters = cfg["cqtd_max_filters"]
|
510 |
-
self.filters_scale = cfg["cqtd_filters_scale"]
|
511 |
-
self.kernel_size = (3, 9)
|
512 |
-
self.dilations = cfg["cqtd_dilations"]
|
513 |
-
self.stride = (1, 2)
|
514 |
-
|
515 |
-
self.in_channels = cfg["cqtd_in_channels"]
|
516 |
-
self.out_channels = cfg["cqtd_out_channels"]
|
517 |
-
self.fs = cfg["sampling_rate"]
|
518 |
-
self.hop_length = hop_length
|
519 |
-
self.n_octaves = n_octaves
|
520 |
-
self.bins_per_octave = bins_per_octave
|
521 |
-
|
522 |
-
# lazy-load
|
523 |
-
from nnAudio import features
|
524 |
-
self.cqt_transform = features.cqt.CQT2010v2(
|
525 |
-
sr=self.fs * 2,
|
526 |
-
hop_length=self.hop_length,
|
527 |
-
n_bins=self.bins_per_octave * self.n_octaves,
|
528 |
-
bins_per_octave=self.bins_per_octave,
|
529 |
-
output_format="Complex",
|
530 |
-
pad_mode="constant",
|
531 |
-
)
|
532 |
-
|
533 |
-
self.conv_pres = nn.ModuleList()
|
534 |
-
for i in range(self.n_octaves):
|
535 |
-
self.conv_pres.append(
|
536 |
-
nn.Conv2d(
|
537 |
-
self.in_channels * 2,
|
538 |
-
self.in_channels * 2,
|
539 |
-
kernel_size=self.kernel_size,
|
540 |
-
padding=self.get_2d_padding(self.kernel_size),
|
541 |
-
)
|
542 |
-
)
|
543 |
-
|
544 |
-
self.convs = nn.ModuleList()
|
545 |
-
|
546 |
-
self.convs.append(
|
547 |
-
nn.Conv2d(
|
548 |
-
self.in_channels * 2,
|
549 |
-
self.filters,
|
550 |
-
kernel_size=self.kernel_size,
|
551 |
-
padding=self.get_2d_padding(self.kernel_size),
|
552 |
-
)
|
553 |
-
)
|
554 |
-
|
555 |
-
in_chs = min(self.filters_scale * self.filters, self.max_filters)
|
556 |
-
for i, dilation in enumerate(self.dilations):
|
557 |
-
out_chs = min(
|
558 |
-
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
|
559 |
-
)
|
560 |
-
self.convs.append(
|
561 |
-
weight_norm(nn.Conv2d(
|
562 |
-
in_chs,
|
563 |
-
out_chs,
|
564 |
-
kernel_size=self.kernel_size,
|
565 |
-
stride=self.stride,
|
566 |
-
dilation=(dilation, 1),
|
567 |
-
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)),
|
568 |
-
))
|
569 |
-
)
|
570 |
-
in_chs = out_chs
|
571 |
-
out_chs = min(
|
572 |
-
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
|
573 |
-
self.max_filters,
|
574 |
-
)
|
575 |
-
self.convs.append(
|
576 |
-
weight_norm(nn.Conv2d(
|
577 |
-
in_chs,
|
578 |
-
out_chs,
|
579 |
-
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
580 |
-
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
581 |
-
))
|
582 |
-
)
|
583 |
-
|
584 |
-
self.conv_post = weight_norm(nn.Conv2d(
|
585 |
-
out_chs,
|
586 |
-
self.out_channels,
|
587 |
-
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
588 |
-
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
589 |
-
))
|
590 |
-
|
591 |
-
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
|
592 |
-
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2)
|
593 |
-
|
594 |
-
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False)
|
595 |
-
if self.cqtd_normalize_volume:
|
596 |
-
print(f"INFO: cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!")
|
597 |
-
|
598 |
-
def get_2d_padding(
|
599 |
-
self, kernel_size: typing.Tuple[int, int], dilation: typing.Tuple[int, int] = (1, 1)
|
600 |
-
):
|
601 |
-
return (
|
602 |
-
((kernel_size[0] - 1) * dilation[0]) // 2,
|
603 |
-
((kernel_size[1] - 1) * dilation[1]) // 2,
|
604 |
-
)
|
605 |
-
|
606 |
-
def forward(self, x):
|
607 |
-
fmap = []
|
608 |
-
|
609 |
-
if self.cqtd_normalize_volume:
|
610 |
-
# Remove DC offset
|
611 |
-
x = x - x.mean(dim=-1, keepdims=True)
|
612 |
-
# Peak normalize the volume of input audio
|
613 |
-
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
614 |
-
|
615 |
-
x = self.resample(x)
|
616 |
-
|
617 |
-
z = self.cqt_transform(x)
|
618 |
-
|
619 |
-
z_amplitude = z[:, :, :, 0].unsqueeze(1)
|
620 |
-
z_phase = z[:, :, :, 1].unsqueeze(1)
|
621 |
-
|
622 |
-
z = torch.cat([z_amplitude, z_phase], dim=1)
|
623 |
-
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W]
|
624 |
-
|
625 |
-
latent_z = []
|
626 |
-
for i in range(self.n_octaves):
|
627 |
-
latent_z.append(
|
628 |
-
self.conv_pres[i](
|
629 |
-
z[
|
630 |
-
:,
|
631 |
-
:,
|
632 |
-
:,
|
633 |
-
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
|
634 |
-
]
|
635 |
-
)
|
636 |
-
)
|
637 |
-
latent_z = torch.cat(latent_z, dim=-1)
|
638 |
-
|
639 |
-
for i, l in enumerate(self.convs):
|
640 |
-
latent_z = l(latent_z)
|
641 |
-
|
642 |
-
latent_z = self.activation(latent_z)
|
643 |
-
fmap.append(latent_z)
|
644 |
-
|
645 |
-
latent_z = self.conv_post(latent_z)
|
646 |
-
|
647 |
-
return latent_z, fmap
|
648 |
-
|
649 |
-
|
650 |
-
class MultiScaleSubbandCQTDiscriminator(nn.Module):
|
651 |
-
def __init__(self, cfg):
|
652 |
-
super().__init__()
|
653 |
-
|
654 |
-
self.cfg = cfg
|
655 |
-
# Using get with defaults
|
656 |
-
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32)
|
657 |
-
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024)
|
658 |
-
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1)
|
659 |
-
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4])
|
660 |
-
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1)
|
661 |
-
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1)
|
662 |
-
# multi-scale params to loop over
|
663 |
-
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256])
|
664 |
-
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9])
|
665 |
-
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get("cqtd_bins_per_octaves", [24, 36, 48])
|
666 |
-
|
667 |
-
self.discriminators = nn.ModuleList(
|
668 |
-
[
|
669 |
-
DiscriminatorCQT(
|
670 |
-
self.cfg,
|
671 |
-
hop_length=self.cfg["cqtd_hop_lengths"][i],
|
672 |
-
n_octaves=self.cfg["cqtd_n_octaves"][i],
|
673 |
-
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i],
|
674 |
-
)
|
675 |
-
for i in range(len(self.cfg["cqtd_hop_lengths"]))
|
676 |
-
]
|
677 |
-
)
|
678 |
-
|
679 |
-
def forward(
|
680 |
-
self,
|
681 |
-
y: torch.Tensor,
|
682 |
-
y_hat: torch.Tensor
|
683 |
-
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
684 |
-
|
685 |
-
y_d_rs = []
|
686 |
-
y_d_gs = []
|
687 |
-
fmap_rs = []
|
688 |
-
fmap_gs = []
|
689 |
-
|
690 |
-
for disc in self.discriminators:
|
691 |
-
y_d_r, fmap_r = disc(y)
|
692 |
-
y_d_g, fmap_g = disc(y_hat)
|
693 |
-
y_d_rs.append(y_d_r)
|
694 |
-
fmap_rs.append(fmap_r)
|
695 |
-
y_d_gs.append(y_d_g)
|
696 |
-
fmap_gs.append(fmap_g)
|
697 |
-
|
698 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
699 |
-
|
700 |
-
|
701 |
-
class CombinedDiscriminator(nn.Module):
|
702 |
-
# wrapper of chaining multiple discrimiantor architectures
|
703 |
-
# ex: combine mbd and cqtd as a single class
|
704 |
-
def __init__(
|
705 |
-
self,
|
706 |
-
list_discriminator: List[nn.Module]
|
707 |
-
):
|
708 |
-
super().__init__()
|
709 |
-
self.discrimiantor = nn.ModuleList(list_discriminator)
|
710 |
-
|
711 |
-
def forward(
|
712 |
-
self,
|
713 |
-
y: torch.Tensor,
|
714 |
-
y_hat: torch.Tensor
|
715 |
-
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
716 |
-
|
717 |
-
y_d_rs = []
|
718 |
-
y_d_gs = []
|
719 |
-
fmap_rs = []
|
720 |
-
fmap_gs = []
|
721 |
-
|
722 |
-
for disc in self.discrimiantor:
|
723 |
-
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat)
|
724 |
-
y_d_rs.extend(y_d_r)
|
725 |
-
fmap_rs.extend(fmap_r)
|
726 |
-
y_d_gs.extend(y_d_g)
|
727 |
-
fmap_gs.extend(fmap_g)
|
728 |
-
|
729 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
730 |
-
|
731 |
-
|
732 |
-
# Adapted from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/loss.py under the MIT license.
|
733 |
-
# LICENSE is in incl_licenses directory.
|
734 |
-
class MultiScaleMelSpectrogramLoss(nn.Module):
|
735 |
-
"""Compute distance between mel spectrograms. Can be used
|
736 |
-
in a multi-scale way.
|
737 |
-
|
738 |
-
Parameters
|
739 |
-
----------
|
740 |
-
n_mels : List[int]
|
741 |
-
Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320],
|
742 |
-
window_lengths : List[int], optional
|
743 |
-
Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048]
|
744 |
-
loss_fn : typing.Callable, optional
|
745 |
-
How to compare each loss, by default nn.L1Loss()
|
746 |
-
clamp_eps : float, optional
|
747 |
-
Clamp on the log magnitude, below, by default 1e-5
|
748 |
-
mag_weight : float, optional
|
749 |
-
Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part)
|
750 |
-
log_weight : float, optional
|
751 |
-
Weight of log magnitude portion of loss, by default 1.0
|
752 |
-
pow : float, optional
|
753 |
-
Power to raise magnitude to before taking log, by default 1.0
|
754 |
-
weight : float, optional
|
755 |
-
Weight of this loss, by default 1.0
|
756 |
-
match_stride : bool, optional
|
757 |
-
Whether to match the stride of convolutional layers, by default False
|
758 |
-
|
759 |
-
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
760 |
-
Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
|
761 |
-
"""
|
762 |
-
|
763 |
-
def __init__(
|
764 |
-
self,
|
765 |
-
sampling_rate: int,
|
766 |
-
n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320],
|
767 |
-
window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048],
|
768 |
-
loss_fn: typing.Callable = nn.L1Loss(),
|
769 |
-
clamp_eps: float = 1e-5,
|
770 |
-
mag_weight: float = 0.0,
|
771 |
-
log_weight: float = 1.0,
|
772 |
-
pow: float = 1.0,
|
773 |
-
weight: float = 1.0,
|
774 |
-
match_stride: bool = False,
|
775 |
-
mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0],
|
776 |
-
mel_fmax: List[float] = [None, None, None, None, None, None, None],
|
777 |
-
window_type: str = 'hann',
|
778 |
-
):
|
779 |
-
super().__init__()
|
780 |
-
self.sampling_rate = sampling_rate
|
781 |
-
|
782 |
-
STFTParams = namedtuple(
|
783 |
-
"STFTParams",
|
784 |
-
["window_length", "hop_length", "window_type", "match_stride"],
|
785 |
-
)
|
786 |
-
|
787 |
-
self.stft_params = [
|
788 |
-
STFTParams(
|
789 |
-
window_length=w,
|
790 |
-
hop_length=w // 4,
|
791 |
-
match_stride=match_stride,
|
792 |
-
window_type=window_type,
|
793 |
-
)
|
794 |
-
for w in window_lengths
|
795 |
-
]
|
796 |
-
self.n_mels = n_mels
|
797 |
-
self.loss_fn = loss_fn
|
798 |
-
self.clamp_eps = clamp_eps
|
799 |
-
self.log_weight = log_weight
|
800 |
-
self.mag_weight = mag_weight
|
801 |
-
self.weight = weight
|
802 |
-
self.mel_fmin = mel_fmin
|
803 |
-
self.mel_fmax = mel_fmax
|
804 |
-
self.pow = pow
|
805 |
-
|
806 |
-
@staticmethod
|
807 |
-
@functools.lru_cache(None)
|
808 |
-
def get_window(
|
809 |
-
window_type,window_length,
|
810 |
-
):
|
811 |
-
return signal.get_window(window_type, window_length)
|
812 |
-
|
813 |
-
@staticmethod
|
814 |
-
@functools.lru_cache(None)
|
815 |
-
def get_mel_filters(
|
816 |
-
sr, n_fft, n_mels, fmin, fmax
|
817 |
-
):
|
818 |
-
return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
819 |
-
|
820 |
-
def mel_spectrogram(
|
821 |
-
self, wav, n_mels, fmin, fmax, window_length, hop_length, match_stride, window_type
|
822 |
-
):
|
823 |
-
# mirrors AudioSignal.mel_spectrogram used by BigVGAN-v2 training from:
|
824 |
-
# https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
|
825 |
-
B, C, T = wav.shape
|
826 |
-
|
827 |
-
if match_stride:
|
828 |
-
assert (
|
829 |
-
hop_length == window_length // 4
|
830 |
-
), "For match_stride, hop must equal n_fft // 4"
|
831 |
-
right_pad = math.ceil(T / hop_length) * hop_length - T
|
832 |
-
pad = (window_length - hop_length) // 2
|
833 |
-
else:
|
834 |
-
right_pad = 0
|
835 |
-
pad = 0
|
836 |
-
|
837 |
-
wav = torch.nn.functional.pad(
|
838 |
-
wav, (pad, pad + right_pad), mode='reflect'
|
839 |
-
)
|
840 |
-
|
841 |
-
window = self.get_window(window_type, window_length)
|
842 |
-
window = torch.from_numpy(window).to(wav.device).float()
|
843 |
-
|
844 |
-
stft = torch.stft(
|
845 |
-
wav.reshape(-1, T),
|
846 |
-
n_fft=window_length,
|
847 |
-
hop_length=hop_length,
|
848 |
-
window=window,
|
849 |
-
return_complex=True,
|
850 |
-
center=True,
|
851 |
-
)
|
852 |
-
_, nf, nt = stft.shape
|
853 |
-
stft = stft.reshape(B, C, nf, nt)
|
854 |
-
if match_stride:
|
855 |
-
# Drop first two and last two frames, which are added
|
856 |
-
# because of padding. Now num_frames * hop_length = num_samples.
|
857 |
-
stft = stft[..., 2:-2]
|
858 |
-
magnitude = torch.abs(stft)
|
859 |
-
|
860 |
-
nf = magnitude.shape[2]
|
861 |
-
mel_basis = self.get_mel_filters(self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax)
|
862 |
-
mel_basis = torch.from_numpy(mel_basis).to(wav.device)
|
863 |
-
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
|
864 |
-
mel_spectrogram = mel_spectrogram.transpose(-1, 2)
|
865 |
-
|
866 |
-
return mel_spectrogram
|
867 |
-
|
868 |
-
def forward(
|
869 |
-
self,
|
870 |
-
x: torch.Tensor,
|
871 |
-
y: torch.Tensor
|
872 |
-
) -> torch.Tensor:
|
873 |
-
"""Computes mel loss between an estimate and a reference
|
874 |
-
signal.
|
875 |
-
|
876 |
-
Parameters
|
877 |
-
----------
|
878 |
-
x : torch.Tensor
|
879 |
-
Estimate signal
|
880 |
-
y : torch.Tensor
|
881 |
-
Reference signal
|
882 |
-
|
883 |
-
Returns
|
884 |
-
-------
|
885 |
-
torch.Tensor
|
886 |
-
Mel loss.
|
887 |
-
"""
|
888 |
-
|
889 |
-
loss = 0.0
|
890 |
-
for n_mels, fmin, fmax, s in zip(
|
891 |
-
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
892 |
-
):
|
893 |
-
kwargs = {
|
894 |
-
"n_mels": n_mels,
|
895 |
-
"fmin": fmin,
|
896 |
-
"fmax": fmax,
|
897 |
-
"window_length": s.window_length,
|
898 |
-
"hop_length": s.hop_length,
|
899 |
-
"match_stride": s.match_stride,
|
900 |
-
"window_type": s.window_type,
|
901 |
-
}
|
902 |
-
|
903 |
-
x_mels = self.mel_spectrogram(x, **kwargs)
|
904 |
-
y_mels = self.mel_spectrogram(y, **kwargs)
|
905 |
-
x_logmels = torch.log(x_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0))
|
906 |
-
y_logmels = torch.log(y_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0))
|
907 |
-
|
908 |
-
loss += self.log_weight * self.loss_fn(x_logmels, y_logmels)
|
909 |
-
loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels)
|
910 |
-
|
911 |
-
return loss
|
912 |
-
|
913 |
-
|
914 |
-
# loss functions
|
915 |
-
def feature_loss(
|
916 |
-
fmap_r: List[List[torch.Tensor]],
|
917 |
-
fmap_g: List[List[torch.Tensor]]
|
918 |
-
) -> torch.Tensor:
|
919 |
-
|
920 |
-
loss = 0
|
921 |
-
for dr, dg in zip(fmap_r, fmap_g):
|
922 |
-
for rl, gl in zip(dr, dg):
|
923 |
-
loss += torch.mean(torch.abs(rl - gl))
|
924 |
-
|
925 |
-
return loss*2 # this equates to lambda=2.0 for the feature matching loss
|
926 |
-
|
927 |
-
def discriminator_loss(
|
928 |
-
disc_real_outputs: List[torch.Tensor],
|
929 |
-
disc_generated_outputs: List[torch.Tensor]
|
930 |
-
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
|
931 |
-
|
932 |
-
loss = 0
|
933 |
-
r_losses = []
|
934 |
-
g_losses = []
|
935 |
-
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
936 |
-
r_loss = torch.mean((1-dr)**2)
|
937 |
-
g_loss = torch.mean(dg**2)
|
938 |
-
loss += (r_loss + g_loss)
|
939 |
-
r_losses.append(r_loss.item())
|
940 |
-
g_losses.append(g_loss.item())
|
941 |
-
|
942 |
-
return loss, r_losses, g_losses
|
943 |
-
|
944 |
-
def generator_loss(
|
945 |
-
disc_outputs: List[torch.Tensor]
|
946 |
-
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
947 |
-
|
948 |
-
loss = 0
|
949 |
-
gen_losses = []
|
950 |
-
for dg in disc_outputs:
|
951 |
-
l = torch.mean((1-dg)**2)
|
952 |
-
gen_losses.append(l)
|
953 |
-
loss += l
|
954 |
-
|
955 |
-
return loss, gen_losses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|