# Copyright (c) 2024 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/jik876/hifi-gan under the MIT license. # LICENSE is in incl_licenses directory. import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from torchaudio.transforms import Spectrogram, Resample from librosa.filters import mel as librosa_mel_fn from scipy import signal import activations from utils import init_weights, get_padding from alias_free_torch.act import Activation1d as TorchActivation1d import typing from typing import List, Optional, Tuple from collections import namedtuple import math import functools class AMPBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): super(AMPBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers # select which Activation1d, lazy-load cuda version to ensure backward compatibility if self.h.get("use_cuda_kernel", False): # faster CUDA kernel implementation of Activation1d from alias_free_cuda.activation1d import Activation1d as CudaActivation1d Activation1d = CudaActivation1d else: Activation1d = TorchActivation1d if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing self.activations = nn.ModuleList([ Activation1d( activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) for _ in range(self.num_layers) ]) elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing self.activations = nn.ModuleList([ Activation1d( activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) for _ in range(self.num_layers) ]) else: raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") def forward(self, x): acts1, acts2 = self.activations[::2], self.activations[1::2] for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): xt = a1(x) xt = c1(xt) xt = a2(xt) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class AMPBlock2(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): super(AMPBlock2, self).__init__() self.h = h self.convs = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) self.num_layers = len(self.convs) # total number of conv layers # select which Activation1d, lazy-load cuda version to ensure backward compatibility if self.h.get("use_cuda_kernel", False): # faster CUDA kernel implementation of Activation1d from alias_free_cuda.activation1d import Activation1d as CudaActivation1d Activation1d = CudaActivation1d else: Activation1d = TorchActivation1d if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing self.activations = nn.ModuleList([ Activation1d( activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) for _ in range(self.num_layers) ]) elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing self.activations = nn.ModuleList([ Activation1d( activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) for _ in range(self.num_layers) ]) else: raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") def forward(self, x): for c, a in zip (self.convs, self.activations): xt = a(x) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class BigVGAN(torch.nn.Module): # this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks. # New in v2: if use_cuda_kernel is set to True, it loads optimized CUDA kernels for AMP. # NOTE: use_cuda_kernel=True should be used for inference only (training is not supported). def __init__( self, h, use_cuda_kernel: bool=False ): super(BigVGAN, self).__init__() self.h = h self.h["use_cuda_kernel"] = use_cuda_kernel # add it to global hyperparameters (h) self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) # pre conv self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) # define which AMPBlock to use. BigVGAN uses AMPBlock1 as default resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 # transposed conv-based upsamplers. does not apply anti-aliasing self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append(nn.ModuleList([ weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i), h.upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2)) ])) # residual blocks using anti-aliased multi-periodicity composition modules (AMP) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) # select which Activation1d, lazy-load cuda version to ensure backward compatibility if self.h.get("use_cuda_kernel", False): # faster CUDA kernel implementation of Activation1d from alias_free_cuda.activation1d import Activation1d as CudaActivation1d Activation1d = CudaActivation1d else: Activation1d = TorchActivation1d # post conv if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale) self.activation_post = Activation1d(activation=activation_post) elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) self.activation_post = Activation1d(activation=activation_post) else: raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") # whether to use bias for the final conv_post. Defaults to True for backward compatibility self.use_bias_at_final = h.get("use_bias_at_final", True) self.conv_post = weight_norm(Conv1d( ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final )) # weight initialization for i in range(len(self.ups)): self.ups[i].apply(init_weights) self.conv_post.apply(init_weights) # final tanh activation. Defaults to True for backward compatibility self.use_tanh_at_final = h.get("use_tanh_at_final", True) def forward(self, x): # pre conv x = self.conv_pre(x) for i in range(self.num_upsamples): # upsampling for i_up in range(len(self.ups[i])): x = self.ups[i][i_up](x) # AMP blocks xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels # post conv x = self.activation_post(x) x = self.conv_post(x) # final tanh activation if self.use_tanh_at_final: x = torch.tanh(x) else: x = torch.clamp(x, min=-1., max=1.) # bound the output to [-1, 1] return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: for l_i in l: remove_weight_norm(l_i) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.d_mult = h.discriminator_channel_mult norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, 0.1) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, h): super(MultiPeriodDiscriminator, self).__init__() self.mpd_reshapes = h.mpd_reshapes print("mpd_reshapes: {}".format(self.mpd_reshapes)) discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes] self.discriminators = nn.ModuleList(discriminators) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorR(nn.Module): def __init__(self, cfg, resolution): super().__init__() self.resolution = resolution assert len(self.resolution) == 3, \ "MRD layer requires list with len=3, got {}".format(self.resolution) self.lrelu_slope = 0.1 norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm if hasattr(cfg, "mrd_use_spectral_norm"): print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm)) norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm self.d_mult = cfg.discriminator_channel_mult if hasattr(cfg, "mrd_channel_mult"): print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult)) self.d_mult = cfg.mrd_channel_mult self.convs = nn.ModuleList([ norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))), norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))), ]) self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))) def forward(self, x): fmap = [] x = self.spectrogram(x) x = x.unsqueeze(1) for l in self.convs: x = l(x) x = F.leaky_relu(x, self.lrelu_slope) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap def spectrogram(self, x): n_fft, hop_length, win_length = self.resolution x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect') x = x.squeeze(1) x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True) x = torch.view_as_real(x) # [B, F, TT, 2] mag = torch.norm(x, p=2, dim =-1) #[B, F, TT] return mag class MultiResolutionDiscriminator(nn.Module): def __init__(self, cfg, debug=False): super().__init__() self.resolutions = cfg.resolutions assert len(self.resolutions) == 3,\ "MRD requires list of list with len=3, each element having a list with len=3. got {}".\ format(self.resolutions) self.discriminators = nn.ModuleList( [DiscriminatorR(cfg, resolution) for resolution in self.resolutions] ) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(x=y) y_d_g, fmap_g = d(x=y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec # Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. # LICENSE is in incl_licenses directory. class DiscriminatorB(nn.Module): def __init__( self, window_length: int, channels: int = 32, hop_factor: float = 0.25, bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), ): super().__init__() self.window_length = window_length self.hop_factor = hop_factor self.spec_fn = Spectrogram( n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None ) n_fft = window_length // 2 + 1 bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] self.bands = bands convs = lambda: nn.ModuleList( [ weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), ] ) self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) def spectrogram(self, x): # Remove DC offset x = x - x.mean(dim=-1, keepdims=True) # Peak normalize the volume of input audio x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) x = self.spec_fn(x) x = torch.view_as_real(x) x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F] # Split into bands x_bands = [x[..., b[0] : b[1]] for b in self.bands] return x_bands def forward(self, x: torch.Tensor): x_bands = self.spectrogram(x.squeeze(1)) fmap = [] x = [] for band, stack in zip(x_bands, self.band_convs): for i, layer in enumerate(stack): band = layer(band) band = torch.nn.functional.leaky_relu(band, 0.1) if i > 0: fmap.append(band) x.append(band) x = torch.cat(x, dim=-1) x = self.conv_post(x) fmap.append(x) return x, fmap # Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec # Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license. # LICENSE is in incl_licenses directory. class MultiBandDiscriminator(nn.Module): def __init__( self, h, ): """ Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec. and the modified code adapted from https://github.com/gemelo-ai/vocos. """ super().__init__() # fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h. self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512]) self.discriminators = nn.ModuleList( [DiscriminatorB(window_length=w) for w in self.fft_sizes] ) def forward( self, y: torch.Tensor, y_hat: torch.Tensor ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for d in self.discriminators: y_d_r, fmap_r = d(x=y) y_d_g, fmap_g = d(x=y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license. # LICENSE is in incl_licenses directory. class DiscriminatorCQT(nn.Module): def __init__(self, cfg, hop_length, n_octaves, bins_per_octave): super().__init__() self.cfg = cfg self.filters = cfg["cqtd_filters"] self.max_filters = cfg["cqtd_max_filters"] self.filters_scale = cfg["cqtd_filters_scale"] self.kernel_size = (3, 9) self.dilations = cfg["cqtd_dilations"] self.stride = (1, 2) self.in_channels = cfg["cqtd_in_channels"] self.out_channels = cfg["cqtd_out_channels"] self.fs = cfg["sampling_rate"] self.hop_length = hop_length self.n_octaves = n_octaves self.bins_per_octave = bins_per_octave # lazy-load from nnAudio import features self.cqt_transform = features.cqt.CQT2010v2( sr=self.fs * 2, hop_length=self.hop_length, n_bins=self.bins_per_octave * self.n_octaves, bins_per_octave=self.bins_per_octave, output_format="Complex", pad_mode="constant", ) self.conv_pres = nn.ModuleList() for i in range(self.n_octaves): self.conv_pres.append( nn.Conv2d( self.in_channels * 2, self.in_channels * 2, kernel_size=self.kernel_size, padding=self.get_2d_padding(self.kernel_size), ) ) self.convs = nn.ModuleList() self.convs.append( nn.Conv2d( self.in_channels * 2, self.filters, kernel_size=self.kernel_size, padding=self.get_2d_padding(self.kernel_size), ) ) in_chs = min(self.filters_scale * self.filters, self.max_filters) for i, dilation in enumerate(self.dilations): out_chs = min( (self.filters_scale ** (i + 1)) * self.filters, self.max_filters ) self.convs.append( weight_norm(nn.Conv2d( in_chs, out_chs, kernel_size=self.kernel_size, stride=self.stride, dilation=(dilation, 1), padding=self.get_2d_padding(self.kernel_size, (dilation, 1)), )) ) in_chs = out_chs out_chs = min( (self.filters_scale ** (len(self.dilations) + 1)) * self.filters, self.max_filters, ) self.convs.append( weight_norm(nn.Conv2d( in_chs, out_chs, kernel_size=(self.kernel_size[0], self.kernel_size[0]), padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])), )) ) self.conv_post = weight_norm(nn.Conv2d( out_chs, self.out_channels, kernel_size=(self.kernel_size[0], self.kernel_size[0]), padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])), )) self.activation = torch.nn.LeakyReLU(negative_slope=0.1) self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2) self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False) if self.cqtd_normalize_volume: print(f"INFO: cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!") def get_2d_padding( self, kernel_size: typing.Tuple[int, int], dilation: typing.Tuple[int, int] = (1, 1) ): return ( ((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2, ) def forward(self, x): fmap = [] if self.cqtd_normalize_volume: # Remove DC offset x = x - x.mean(dim=-1, keepdims=True) # Peak normalize the volume of input audio x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) x = self.resample(x) z = self.cqt_transform(x) z_amplitude = z[:, :, :, 0].unsqueeze(1) z_phase = z[:, :, :, 1].unsqueeze(1) z = torch.cat([z_amplitude, z_phase], dim=1) z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W] latent_z = [] for i in range(self.n_octaves): latent_z.append( self.conv_pres[i]( z[ :, :, :, i * self.bins_per_octave : (i + 1) * self.bins_per_octave, ] ) ) latent_z = torch.cat(latent_z, dim=-1) for i, l in enumerate(self.convs): latent_z = l(latent_z) latent_z = self.activation(latent_z) fmap.append(latent_z) latent_z = self.conv_post(latent_z) return latent_z, fmap class MultiScaleSubbandCQTDiscriminator(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg # Using get with defaults self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32) self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024) self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1) self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4]) self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1) self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1) # multi-scale params to loop over self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256]) self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9]) self.cfg["cqtd_bins_per_octaves"] = self.cfg.get("cqtd_bins_per_octaves", [24, 36, 48]) self.discriminators = nn.ModuleList( [ DiscriminatorCQT( self.cfg, hop_length=self.cfg["cqtd_hop_lengths"][i], n_octaves=self.cfg["cqtd_n_octaves"][i], bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i], ) for i in range(len(self.cfg["cqtd_hop_lengths"])) ] ) def forward( self, y: torch.Tensor, y_hat: torch.Tensor ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for disc in self.discriminators: y_d_r, fmap_r = disc(y) y_d_g, fmap_g = disc(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class CombinedDiscriminator(nn.Module): # wrapper of chaining multiple discrimiantor architectures # ex: combine mbd and cqtd as a single class def __init__( self, list_discriminator: List[nn.Module] ): super().__init__() self.discrimiantor = nn.ModuleList(list_discriminator) def forward( self, y: torch.Tensor, y_hat: torch.Tensor ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for disc in self.discrimiantor: y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat) y_d_rs.extend(y_d_r) fmap_rs.extend(fmap_r) y_d_gs.extend(y_d_g) fmap_gs.extend(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs # Adapted from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/loss.py under the MIT license. # LICENSE is in incl_licenses directory. class MultiScaleMelSpectrogramLoss(nn.Module): """Compute distance between mel spectrograms. Can be used in a multi-scale way. Parameters ---------- n_mels : List[int] Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320], window_lengths : List[int], optional Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048] loss_fn : typing.Callable, optional How to compare each loss, by default nn.L1Loss() clamp_eps : float, optional Clamp on the log magnitude, below, by default 1e-5 mag_weight : float, optional Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part) log_weight : float, optional Weight of log magnitude portion of loss, by default 1.0 pow : float, optional Power to raise magnitude to before taking log, by default 1.0 weight : float, optional Weight of this loss, by default 1.0 match_stride : bool, optional Whether to match the stride of convolutional layers, by default False Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py """ def __init__( self, sampling_rate: int, n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320], window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048], loss_fn: typing.Callable = nn.L1Loss(), clamp_eps: float = 1e-5, mag_weight: float = 0.0, log_weight: float = 1.0, pow: float = 1.0, weight: float = 1.0, match_stride: bool = False, mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0], mel_fmax: List[float] = [None, None, None, None, None, None, None], window_type: str = 'hann', ): super().__init__() self.sampling_rate = sampling_rate STFTParams = namedtuple( "STFTParams", ["window_length", "hop_length", "window_type", "match_stride"], ) self.stft_params = [ STFTParams( window_length=w, hop_length=w // 4, match_stride=match_stride, window_type=window_type, ) for w in window_lengths ] self.n_mels = n_mels self.loss_fn = loss_fn self.clamp_eps = clamp_eps self.log_weight = log_weight self.mag_weight = mag_weight self.weight = weight self.mel_fmin = mel_fmin self.mel_fmax = mel_fmax self.pow = pow @staticmethod @functools.lru_cache(None) def get_window( window_type,window_length, ): return signal.get_window(window_type, window_length) @staticmethod @functools.lru_cache(None) def get_mel_filters( sr, n_fft, n_mels, fmin, fmax ): return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) def mel_spectrogram( self, wav, n_mels, fmin, fmax, window_length, hop_length, match_stride, window_type ): # mirrors AudioSignal.mel_spectrogram used by BigVGAN-v2 training from: # https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py B, C, T = wav.shape if match_stride: assert ( hop_length == window_length // 4 ), "For match_stride, hop must equal n_fft // 4" right_pad = math.ceil(T / hop_length) * hop_length - T pad = (window_length - hop_length) // 2 else: right_pad = 0 pad = 0 wav = torch.nn.functional.pad( wav, (pad, pad + right_pad), mode='reflect' ) window = self.get_window(window_type, window_length) window = torch.from_numpy(window).to(wav.device).float() stft = torch.stft( wav.reshape(-1, T), n_fft=window_length, hop_length=hop_length, window=window, return_complex=True, center=True, ) _, nf, nt = stft.shape stft = stft.reshape(B, C, nf, nt) if match_stride: # Drop first two and last two frames, which are added # because of padding. Now num_frames * hop_length = num_samples. stft = stft[..., 2:-2] magnitude = torch.abs(stft) nf = magnitude.shape[2] mel_basis = self.get_mel_filters(self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax) mel_basis = torch.from_numpy(mel_basis).to(wav.device) mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T mel_spectrogram = mel_spectrogram.transpose(-1, 2) return mel_spectrogram def forward( self, x: torch.Tensor, y: torch.Tensor ) -> torch.Tensor: """Computes mel loss between an estimate and a reference signal. Parameters ---------- x : torch.Tensor Estimate signal y : torch.Tensor Reference signal Returns ------- torch.Tensor Mel loss. """ loss = 0.0 for n_mels, fmin, fmax, s in zip( self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params ): kwargs = { "n_mels": n_mels, "fmin": fmin, "fmax": fmax, "window_length": s.window_length, "hop_length": s.hop_length, "match_stride": s.match_stride, "window_type": s.window_type, } x_mels = self.mel_spectrogram(x, **kwargs) y_mels = self.mel_spectrogram(y, **kwargs) x_logmels = torch.log(x_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0)) y_logmels = torch.log(y_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0)) loss += self.log_weight * self.loss_fn(x_logmels, y_logmels) loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels) return loss # loss functions def feature_loss( fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]] ) -> torch.Tensor: loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 # this equates to lambda=2.0 for the feature matching loss def discriminator_loss( disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor] ) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]: loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss( disc_outputs: List[torch.Tensor] ) -> Tuple[torch.Tensor, List[torch.Tensor]]: loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses