Spaces:
Sleeping
Sleeping
File size: 10,019 Bytes
a344f64 a40255d a344f64 49c61f0 f11ac57 a344f64 f4e1932 a344f64 a40255d a344f64 a40255d a344f64 a40255d a344f64 a40255d a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import yaml
import json
import torch
import spaces
import librosa
import argparse
import numpy as np
import gradio as gr
from tqdm import tqdm
import soundfile as sf
from pydub import AudioSegment
from safetensors.torch import load_file
from huggingface_hub import snapshot_download
from data.data import get_audiotext_dataloader
from src.factory import create_model_and_transforms
from train.train_utils import Dict2Class, get_autocast, get_cast_dtype
HEADER = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/NVIDIA/audio-flamingo" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://github.com/NVIDIA/audio-flamingo/blob/main/assets/af_logo.png?raw=true" alt="Audio Flamingo 2 π₯ππ₯" style="max-width: 120px; height: auto;">
</a>
<div>
<h1>Audio Flamingo 2: An Audio-Language Model with Long-Audio Understanding and Expert Reasoning Abilities</h1>
<h5 style="margin: 0;">If this demo please you, please give us a star β on Github or π on this space.</h5>
</div>
</div>
<div style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://github.com/NVIDIA/audio-flamingo"><img src='https://img.shields.io/badge/Github-AudioFlamingo2-9C276A' style="margin-right: 5px;"></a>
<a href="https://arxiv.org/abs/2503.03983"><img src="https://img.shields.io/badge/Arxiv-2503.03983-AD1C18" style="margin-right: 5px;"></a>
<a href="https://huggingface.co/nvidia/audio-flamingo-2"><img src="https://img.shields.io/badge/π€-Checkpoints-ED5A22.svg" style="margin-right: 5px;"></a>
<a href="https://github.com/NVIDIA/audio-flamingo/stargazers"><img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social"></a>
</div>
""")
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
api_key = os.getenv("my_secret")
snapshot_download(repo_id="nvidia/audio-flamingo-2-1.5B", local_dir="./", token=api_key)
config = yaml.load(open("configs/inference.yaml"), Loader=yaml.FullLoader)
data_config = config['data_config']
model_config = config['model_config']
clap_config = config['clap_config']
args = Dict2Class(config['train_config'])
model, tokenizer = create_model_and_transforms(
**model_config,
clap_config=clap_config,
use_local_files=args.offline,
gradient_checkpointing=args.gradient_checkpointing,
freeze_lm_embeddings=args.freeze_lm_embeddings,
)
device_id = 0
model = model.to(device_id)
model.eval()
# Load metadata
with open("safe_ckpt/metadata.json", "r") as f:
metadata = json.load(f)
# Reconstruct the full state_dict
state_dict = {}
# Load each SafeTensors chunk
for chunk_name in metadata:
chunk_path = f"safe_ckpt/{chunk_name}.safetensors"
chunk_tensors = load_file(chunk_path)
# Merge tensors into state_dict
state_dict.update(chunk_tensors)
x,y = model.load_state_dict(state_dict, False)
autocast = get_autocast(
args.precision, cache_enabled=(not args.fsdp)
)
cast_dtype = get_cast_dtype(args.precision)
def get_num_windows(T, sr):
window_length = int(float(clap_config["window_length"]) * sr)
window_overlap = int(float(clap_config["window_overlap"]) * sr)
max_num_window = int(clap_config["max_num_window"])
num_windows = 1
if T <= window_length:
num_windows = 1
full_length = window_length
elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
num_windows = max_num_window
full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
else:
num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
full_length = num_windows * window_length - (num_windows - 1) * window_overlap
return num_windows, full_length
def read_audio(file_path, target_sr=16000, duration=30.0, start=0.0):
if file_path.endswith('.mp3'):
audio = AudioSegment.from_file(file_path)
if len(audio) > (start + duration) * 1000:
audio = audio[start * 1000:(start + duration) * 1000]
if audio.frame_rate != target_sr:
audio = audio.set_frame_rate(target_sr)
if audio.channels > 1:
audio = audio.set_channels(1)
data = np.array(audio.get_array_of_samples())
if audio.sample_width == 2:
data = data.astype(np.float32) / np.iinfo(np.int16).max
elif audio.sample_width == 4:
data = data.astype(np.float32) / np.iinfo(np.int32).max
else:
raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))
else:
with sf.SoundFile(file_path) as audio:
original_sr = audio.samplerate
channels = audio.channels
max_frames = int((start + duration) * original_sr)
audio.seek(int(start * original_sr))
frames_to_read = min(max_frames, len(audio))
data = audio.read(frames_to_read)
if data.max() > 1 or data.min() < -1:
data = data / max(abs(data.max()), abs(data.min()))
if original_sr != target_sr:
if channels == 1:
data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
else:
data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
else:
if channels != 1:
data = data.T[0]
if data.min() >= 0:
data = 2 * data / abs(data.max()) - 1.0
else:
data = data / max(abs(data.max()), abs(data.min()))
assert len(data.shape) == 1, data.shape
return data
def load_audio(audio_path):
sr = 16000
window_length = int(float(clap_config["window_length"]) * sr)
window_overlap = int(float(clap_config["window_overlap"]) * sr)
max_num_window = int(clap_config["max_num_window"])
duration = max_num_window * (clap_config["window_length"] - clap_config["window_overlap"]) + clap_config["window_overlap"]
audio_data = read_audio(audio_path, sr, duration, 0.0) # hard code audio start to 0.0
T = len(audio_data)
num_windows, full_length = get_num_windows(T, sr)
# pads to the nearest multiple of window_length
if full_length > T:
audio_data = np.append(audio_data, np.zeros(full_length - T))
audio_data = audio_data.reshape(1, -1)
audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()
audio_clips = []
audio_embed_mask = torch.ones(num_windows)
for i in range(num_windows):
start = i * (window_length - window_overlap)
audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
audio_clips.append(audio_data_tensor_this)
if len(audio_clips) < max_num_window:
audio_clips = audio_clips[:max_num_window]
audio_embed_mask = audio_embed_mask[:max_num_window]
audio_clips = torch.cat(audio_clips)
return audio_clips, audio_embed_mask
@spaces.GPU
def predict(filepath, question):
audio_clips, audio_embed_mask = load_audio(filepath)
audio_clips = audio_clips.to(device_id, dtype=cast_dtype, non_blocking=True)
audio_embed_mask = audio_embed_mask.to(device_id, dtype=cast_dtype, non_blocking=True)
text_prompt = str(question).lower()
text_output = str(question).lower()
sample = f"<audio>{text_prompt.strip()}{tokenizer.sep_token}"
# None<|endofchunk|>{tokenizer.eos_token}"
text = tokenizer(
sample,
max_length=512,
padding="longest",
truncation="only_first",
return_tensors="pt"
)
input_ids = text["input_ids"].to(device_id, non_blocking=True)
media_token_id = tokenizer.encode("<audio>")[-1]
sep_token_id = tokenizer.sep_token_id
prompt = input_ids
with torch.no_grad():
output = model.generate(
audio_x=audio_clips.unsqueeze(0),
audio_x_mask=audio_embed_mask.unsqueeze(0),
lang_x=prompt,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=256,
temperature=0.0)[0]
output_decoded = tokenizer.decode(output).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '')
return output_decoded
audio_examples = [
["./examples/soundcap1.wav", "What is the soundscape in this audio?"],
["./examples/muscicap1.wav", "Summarize the music content in a sentence."],
["./examples/mmau1.wav", "What specific sounds can be distinguished from the audio clip? (A) Helicopter and impact sounds (B) Whistling and chatter (C) Car honking and raindrops (D) Birds chirping and water flowing"],
]
demo = gr.Blocks()
with demo:
gr.HTML(HEADER)
gr.Interface(fn=predict,
inputs=[gr.Audio(type="filepath"), gr.Textbox(value='Describe the audio.', label='Question')],
outputs=[gr.Textbox(label="Audio Flamingo 2 Output")],
cache_examples=True,
examples=audio_examples,
title="Audio Flamingo 2 Demo",
description="Audio Flamingo 2 is NVIDIA's latest Large Audio-Language Model that is capable of understanding audio inputs and answer any open-ended question about it. <br>" +
"**Audio Flamingo 2 is not an ASR model and has limited ability to recognize the speech content. It primarily focuses on perception and understanding of non-speech sounds and music.**<br>" +
"The demo is hosted on the Stage 2 checkpoints and supports upto 90 seconds of audios. Stage 3 checkpoints that support upto 5 minutes will be released at a later point.")
demo.launch(share=True) |