Spaces:
Running
on
L4
Running
on
L4
File size: 10,575 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import torch
from einops import rearrange
from torch import nn
import torch.nn.utils as utils
from torch.distributed.fsdp.wrap import (
enable_wrap,
wrap,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
)
try:
from .helpers import TransformerEncoder
from .utils import apply_with_stopping_condition
except:
from helpers import TransformerEncoder
from utils import apply_with_stopping_condition
class Flamingo(nn.Module):
def __init__(
self,
clap,
unfreeze_clap,
lang_encoder: nn.Module,
eoc_token_id: int,
media_token_id: int,
sep_token_id: int,
clap_embed_dim: int,
audio_transformer_kwargs: dict,
cross_attn_every_n_layers: int = 1,
gradient_checkpointing: bool = False,
):
super().__init__()
self.eoc_token_id = eoc_token_id
self.media_token_id = media_token_id
self.sep_token_id = sep_token_id
# initialize embedding dimensions
self.clap_embed_dim = clap_embed_dim
# Initilaize CLAP
self.clap = clap
self.unfreeze_clap = unfreeze_clap
self.clap.requires_grad_(unfreeze_clap)
if hasattr(lang_encoder.config, "d_model"):
self.lang_dim = lang_encoder.config.d_model # mpt uses d_model
else:
self.lang_dim = lang_encoder.config.hidden_size
# define just one type of audio transformer
n_head = audio_transformer_kwargs["n_head"]
n_layers = audio_transformer_kwargs["n_layers"]
d_inner = audio_transformer_kwargs["d_inner"]
max_num_media = audio_transformer_kwargs["max_num_media"]
max_window_per_audio = audio_transformer_kwargs["max_window_per_audio"]
common_encoder_embed_dim = clap_embed_dim
# define the transformers
assert common_encoder_embed_dim % n_head == 0
self.audio_transformer_clap = TransformerEncoder(
d_word_vec=common_encoder_embed_dim,
n_layers=n_layers,
n_head=n_head,
d_k=common_encoder_embed_dim // n_head,
d_v=common_encoder_embed_dim // n_head,
d_model=common_encoder_embed_dim,
d_inner=d_inner,
dropout=0.0,
n_position=max_num_media,
scale_emb=True
)
self.lang_encoder = lang_encoder
self.lang_encoder.init_flamingo(
media_token_id=media_token_id,
lang_hidden_size=self.lang_dim,
audio_hidden_size=common_encoder_embed_dim,
max_window_per_audio=max_window_per_audio,
cross_attn_every_n_layers=cross_attn_every_n_layers,
gradient_checkpointing=gradient_checkpointing,
)
self._use_gradient_checkpointing = gradient_checkpointing
# enable gradient checkpoint for the audio transformers
self.audio_transformer_clap._use_gradient_checkpointing = gradient_checkpointing
# enable gradient checkpoint for encoders
self.clap._use_gradient_checkpointing = gradient_checkpointing
def forward(
self,
audio_x: torch.Tensor,
audio_x_mask: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
labels: torch.Tensor = None,
clear_conditioned_layers: bool = True,
past_key_values=None,
use_cache: bool = False,
):
assert (
self.lang_encoder.initialized_flamingo
), "Flamingo layers are not initialized. Please call `init_flamingo` first."
assert (
self.lang_encoder._use_cached_audio_x or audio_x is not None
), "Must provide either audio_x or have precached media using cache_media()."
if self.lang_encoder._use_cached_audio_x:
assert (
audio_x is None
), "Expect audio_x to be None when media has been cached using cache_media(). Try uncache_media() first."
assert self.lang_encoder.is_conditioned()
else:
self._encode_audio_x(audio_x=audio_x, audio_x_mask=audio_x_mask)
self._condition_media_locations(input_ids=lang_x)
output = self.lang_encoder(
input_ids=lang_x,
attention_mask=attention_mask,
labels=labels,
past_key_values=past_key_values,
use_cache=use_cache,
)
if clear_conditioned_layers:
self.lang_encoder.clear_conditioned_layers()
return output
def generate(
self,
audio_x: torch.Tensor,
audio_x_mask: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
**kwargs,
):
num_beams = kwargs.pop("num_beams", 1)
if num_beams > 1:
audio_x = audio_x.repeat_interleave(num_beams, dim=0)
self.lang_encoder._use_cached_audio_x = True
self._encode_audio_x(audio_x=audio_x, audio_x_mask=audio_x_mask)
eos_token_id = kwargs.pop("eos_token_id", self.eoc_token_id)
output = self.lang_encoder.generate(
input_ids=lang_x,
attention_mask=attention_mask,
eos_token_id=eos_token_id,
num_beams=num_beams,
**kwargs,
)
self.lang_encoder.clear_conditioned_layers()
self.lang_encoder._use_cached_audio_x = False
return output
def _encode_audio_x(self, audio_x: torch.Tensor, audio_x_mask: torch.Tensor):
"""
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert audio_x.ndim == 3, "audio_x should be of shape (B, num_window, window_length)"
#------------------------------------------------------------------------#
# get embeddings from CLAP
audio_embeds = self.clap(audio_x)
B, L, H, D = audio_embeds.shape # L is number of windows, D is feature dim
assert D == self.clap_embed_dim
audio_x_out = rearrange(audio_embeds, 'b l h d -> b (l h) d')
# handle the masks
expanded_speech_mask = audio_x_mask.repeat_interleave(H, dim=1) # B, (LxH)
if B > 1 and expanded_speech_mask.shape[0] == 1:
expanded_speech_mask = expanded_speech_mask.repeat(B, 1)
assert expanded_speech_mask.shape[0] == B and expanded_speech_mask.shape[1] == L*H, "{} != ({},{})".format(expanded_speech_mask.shape, B, L*H)
#------------------------------------------------------------------------#
audio_x_out = self.audio_transformer_clap(audio_x_out, causal_mask = expanded_speech_mask) # B, LxH, D
# Unsqueeze to handle Falmingo code
audio_x_out = audio_x_out.unsqueeze(2) # B, L, n=1, D
audio_x_mask = expanded_speech_mask.unsqueeze(2) # B, L, n=1
#------------------------------------------------------------------------#
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_audio_x(audio_x_out, audio_x_mask)
def wrap_fsdp(self, wrapper_kwargs, device_id):
# unfreeze the decoder layers
for block in self.lang_encoder.old_decoder_blocks:
block.requires_grad_(True)
# wrap in FSDP
with enable_wrap(wrapper_cls=FSDP, **wrapper_kwargs):
self.audio_transformer_clap = wrap(wrap(self.audio_transformer_clap))
self.lang_encoder.old_decoder_blocks = nn.ModuleList(
wrap(wrap(block)) for block in self.lang_encoder.old_decoder_blocks
)
self.lang_encoder.gated_cross_attn_layers_sound = nn.ModuleList(
wrap(wrap(layer)) if layer is not None else None
for layer in self.lang_encoder.gated_cross_attn_layers_sound
)
self.lang_encoder.init_flamingo_layers(self._use_gradient_checkpointing)
self.lang_encoder.set_input_embeddings(
wrap(wrap(self.lang_encoder.get_input_embeddings()))
)
if hasattr(self.lang_encoder, 'set_output_embeddings'):
self.lang_encoder.set_output_embeddings(
wrap(wrap(self.lang_encoder.get_output_embeddings()))
)
else:
print('skip wrapping output embeddings')
# manually move non-FSDP managed parameters to device_id
# these are all in lang_encoder
apply_with_stopping_condition(
module=self.lang_encoder,
apply_fn=lambda m: m.to(device_id),
apply_condition=lambda m: len(list(m.children())) == 0,
stopping_condition=lambda m: isinstance(m, FSDP),
)
# clap shouldn't be wrapped; should be on each gpu
if self.unfreeze_clap:
apply_with_stopping_condition(
module=self.clap,
apply_fn=lambda m: m.to(device_id),
apply_condition=lambda m: len(list(m.children())) == 0,
stopping_condition=lambda m: isinstance(m, FSDP),
)
# exclude the original decoder layers from the optimizer
for block in self.lang_encoder.old_decoder_blocks:
for p in block.parameters():
p.exclude_from_optimizer = True
# set up clip_grad_norm_ function
def clip_grad_norm_(max_norm):
utils.clip_grad_norm_(self.clap.nvclap.parameters(), max_norm=max_norm)
self.audio_transformer_clap.clip_grad_norm_(max_norm)
for layer in self.lang_encoder.gated_cross_attn_layers_sound:
if layer is not None:
layer.clip_grad_norm_(max_norm)
self.lang_encoder.get_input_embeddings().clip_grad_norm_(max_norm)
self.clip_grad_norm_ = clip_grad_norm_
def _condition_media_locations(self, input_ids: torch.Tensor):
media_locations = (input_ids == self.media_token_id)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_media_locations(media_locations)
def cache_media(self, input_ids: torch.Tensor, audio_x: torch.Tensor, audio_x_mask: torch.Tensor):
self._encode_audio_x(audio_x=audio_x, audio_x_mask=audio_x_mask)
self._condition_media_locations(input_ids=input_ids)
self.lang_encoder._use_cached_audio_x = True
def uncache_media(self):
self.lang_encoder.clear_conditioned_layers()
self.lang_encoder._use_cached_audio_x = False
|