Spaces:
Running
on
L4
Running
on
L4
# This script is based on https://github.com/huggingface/transformers/blob/v4.29.1/src/transformers/models/whisper/modeling_whisper.py | |
""" PyTorch Whisper model.""" | |
import math | |
import random | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.activations import ACT2FN | |
from transformers.generation.logits_process import WhisperTimeStampLogitsProcessor | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
SequenceClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from transformers.models.whisper.configuration_whisper import WhisperConfig | |
from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "WhisperConfig" | |
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny" | |
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"openai/whisper-base", | |
# See all Whisper models at https://huggingface.co/models?filter=whisper | |
] | |
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.LongTensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for | |
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on | |
CPU as part of the preprocessing during training. | |
Args: | |
shape: The shape for which to compute masks. This should be of a tuple of size 2 where | |
the first element is the batch size and the second element is the length of the axis to span. | |
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of | |
independently generated mask spans of length `mask_length` is computed by | |
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the | |
actual percentage will be smaller. | |
mask_length: size of the mask | |
min_masks: minimum number of masked spans | |
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of | |
each batch dimension. | |
""" | |
batch_size, sequence_length = shape | |
if mask_length < 1: | |
raise ValueError("`mask_length` has to be bigger than 0.") | |
if mask_length > sequence_length: | |
raise ValueError( | |
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" | |
f" and `sequence_length`: {sequence_length}`" | |
) | |
# epsilon is used for probabilistic rounding | |
epsilon = np.random.rand(1).item() | |
def compute_num_masked_span(input_length): | |
"""Given input length, compute how many spans should be masked""" | |
num_masked_span = int(mask_prob * input_length / mask_length + epsilon) | |
num_masked_span = max(num_masked_span, min_masks) | |
# make sure num masked span <= sequence_length | |
if num_masked_span * mask_length > sequence_length: | |
num_masked_span = sequence_length // mask_length | |
# make sure num_masked span is also <= input_length - (mask_length - 1) | |
if input_length - (mask_length - 1) < num_masked_span: | |
num_masked_span = max(input_length - (mask_length - 1), 0) | |
return num_masked_span | |
# compute number of masked spans in batch | |
input_lengths = ( | |
attention_mask.sum(-1).detach().tolist() | |
if attention_mask is not None | |
else [sequence_length for _ in range(batch_size)] | |
) | |
# SpecAugment mask to fill | |
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) | |
spec_aug_mask_idxs = [] | |
max_num_masked_span = compute_num_masked_span(sequence_length) | |
if max_num_masked_span == 0: | |
return spec_aug_mask | |
for input_length in input_lengths: | |
# compute num of masked spans for this input | |
num_masked_span = compute_num_masked_span(input_length) | |
# get random indices to mask | |
spec_aug_mask_idx = np.random.choice( | |
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False | |
) | |
# pick first sampled index that will serve as a dummy index to pad vector | |
# to ensure same dimension for all batches due to probabilistic rounding | |
# Picking first sample just pads those vectors twice. | |
if len(spec_aug_mask_idx) == 0: | |
# this case can only happen if `input_length` is strictly smaller then | |
# `sequence_length` in which case the last token has to be a padding | |
# token which we can use as a dummy mask id | |
dummy_mask_idx = sequence_length - 1 | |
else: | |
dummy_mask_idx = spec_aug_mask_idx[0] | |
spec_aug_mask_idx = np.concatenate( | |
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] | |
) | |
spec_aug_mask_idxs.append(spec_aug_mask_idx) | |
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) | |
# expand masked indices to masked spans | |
spec_aug_mask_idxs = np.broadcast_to( | |
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) | |
# add offset to the starting indexes so that indexes now create a span | |
offsets = np.arange(mask_length)[None, None, :] | |
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( | |
batch_size, max_num_masked_span * mask_length | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
# ensure that we cannot have indices larger than sequence_length | |
if spec_aug_mask_idxs.max() > sequence_length - 1: | |
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 | |
# scatter indices to mask | |
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) | |
return spec_aug_mask | |
class WhisperPositionalEmbedding(nn.Embedding): | |
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
super().__init__(num_positions, embedding_dim) | |
def forward(self, input_ids, past_key_values_length=0): | |
return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[1]] | |
class WhisperAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
# Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
# Copied from transformers.models.bart.modeling_bart.BartAttention.forward with BART->whisper | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.reshape(*proj_shape) | |
value_states = value_states.reshape(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper | |
class WhisperEncoderLayer(nn.Module): | |
def __init__(self, config: WhisperConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = WhisperAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
dropout=config.attention_dropout, | |
) | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_head_mask: torch.Tensor, | |
output_attentions: bool = False, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Whisper | |
class WhisperDecoderLayer(nn.Module): | |
def __init__(self, config: WhisperConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = WhisperAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.encoder_attn = WhisperAttention( | |
self.embed_dim, | |
config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = True, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
encoder_hidden_states (`torch.FloatTensor`): | |
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
size `(decoder_attention_heads,)`. | |
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Self Attention | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
# add present self-attn cache to positions 1,2 of present_key_value tuple | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=self_attn_past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class WhisperPreTrainedModel(PreTrainedModel): | |
config_class = WhisperConfig | |
base_model_prefix = "model" | |
main_input_name = "input_features" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] | |
def _init_weights(self, module): | |
std = self.config.init_std | |
if isinstance(module, (nn.Linear, nn.Conv1d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (WhisperDecoder, WhisperEncoder)): | |
module.gradient_checkpointing = value | |
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
input_lengths = (input_lengths - 1) // 2 + 1 | |
return input_lengths | |
WHISPER_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`WhisperConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
WHISPER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in | |
`[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
If you want to change padding behavior, you should read | |
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART | |
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
WHISPER_ENCODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class WhisperEncoder(WhisperPreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`WhisperEncoderLayer`]. | |
Args: | |
config: WhisperConfig | |
""" | |
def __init__(self, config: WhisperConfig): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.num_mel_bins = config.num_mel_bins | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) | |
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) | |
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) | |
self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _freeze_parameters(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
self._requires_grad = False | |
def get_input_embeddings(self) -> nn.Module: | |
return self.conv1 | |
def set_input_embeddings(self, value: nn.Module): | |
self.conv1 = value | |
def forward( | |
self, | |
input_features, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Args: | |
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be | |
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a | |
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into | |
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding | |
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`torch.Tensor`)`, *optional*): | |
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, | |
but it is not used. By default the silence in the input log mel spectrogram are ignored. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) | |
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) | |
inputs_embeds = inputs_embeds.permute(0, 2, 1) | |
embed_pos = self.embed_positions.weight | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
assert head_mask.size()[0] == ( | |
len(self.layers) | |
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): # skip the layer | |
layer_outputs = (None, None) | |
else: | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
None, | |
(head_mask[idx] if head_mask is not None else None), | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
None, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class WhisperDecoder(WhisperPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] | |
Args: | |
config: WhisperConfig | |
""" | |
def __init__(self, config: WhisperConfig): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.decoder_layerdrop | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_target_positions | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) | |
self.layers = nn.ModuleList([WhisperDecoderLayer(config) for _ in range(config.decoder_layers)]) | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
of the decoder. | |
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention | |
on hidden heads. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of | |
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing | |
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more | |
control over how to convert `input_ids` indices into associated vectors than the model's internal | |
embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, input_shape, inputs_embeds, past_key_values_length | |
) | |
# embed positions | |
if input_ids is not None: | |
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) | |
else: | |
positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length) | |
hidden_states = inputs_embeds + positions | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
next_decoder_cache = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
assert attn_mask.size()[0] == (len(self.layers)), ( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, output_attentions, use_cache) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
None, # encoder attention mask | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, # past_key_value | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
hidden_states = self.layer_norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class WhisperModel(WhisperPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"proj_out.weight"] | |
def __init__(self, config: WhisperConfig): | |
super().__init__(config) | |
self.encoder = WhisperEncoder(config) | |
self.decoder = WhisperDecoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.decoder.embed_tokens = value | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def freeze_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
not be updated during training. | |
""" | |
self.encoder._freeze_parameters() | |
def _mask_input_features( | |
self, | |
input_features: torch.FloatTensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
): | |
""" | |
Masks extracted features along time axis and/or along feature axis according to | |
[SpecAugment](https://arxiv.org/abs/1904.08779). | |
""" | |
# `config.apply_spec_augment` can set masking to False | |
if not getattr(self.config, "apply_spec_augment", True): | |
return input_features | |
# generate indices & apply SpecAugment along time axis | |
batch_size, hidden_size, sequence_length = input_features.size() | |
if self.config.mask_time_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along time axis | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
mask_prob=self.config.mask_time_prob, | |
mask_length=self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=self.config.mask_time_min_masks, | |
) | |
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) | |
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) | |
input_features[mask_time_indices] = 0 | |
if self.config.mask_feature_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along feature axis | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
mask_prob=self.config.mask_feature_prob, | |
mask_length=self.config.mask_feature_length, | |
min_masks=self.config.mask_feature_min_masks, | |
) | |
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) | |
input_features[mask_feature_indices] = 0 | |
return input_features | |
def forward( | |
self, | |
input_features: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoFeatureExtractor, WhisperModel | |
>>> from datasets import load_dataset | |
>>> model = WhisperModel.from_pretrained("openai/whisper-base") | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") | |
>>> input_features = inputs.input_features | |
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id | |
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state | |
>>> list(last_hidden_state.shape) | |
[1, 2, 512] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
input_features = self._mask_input_features(input_features, attention_mask=attention_mask) | |
encoder_outputs = self.encoder( | |
input_features, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_outputs[0], | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class WhisperForConditionalGeneration(WhisperPreTrainedModel): | |
base_model_prefix = "model" | |
_keys_to_ignore_on_load_missing = [ | |
r"encoder.version", | |
r"decoder.version", | |
r"proj_out.weight", | |
] | |
_keys_to_ignore_on_save = [ | |
r"proj_out.weight", | |
] | |
def __init__(self, config: WhisperConfig): | |
super().__init__(config) | |
self.model = WhisperModel(config) | |
self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_encoder(self): | |
return self.model.get_encoder() | |
def get_decoder(self): | |
return self.model.get_decoder() | |
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: | |
new_embeddings = super().resize_token_embeddings(new_num_tokens) | |
return new_embeddings | |
def get_output_embeddings(self): | |
return self.proj_out | |
def set_output_embeddings(self, new_embeddings): | |
self.proj_out = new_embeddings | |
def get_input_embeddings(self) -> nn.Module: | |
return self.model.get_input_embeddings() | |
def freeze_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
not be updated during training. | |
""" | |
self.model.encoder._freeze_parameters() | |
def forward( | |
self, | |
input_features: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` | |
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is | |
only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") | |
>>> input_features = inputs.input_features | |
>>> generated_ids = model.generate(inputs=input_features) | |
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> transcription | |
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
outputs = self.model( | |
input_features, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
encoder_outputs=encoder_outputs, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
lm_logits = self.proj_out(outputs[0]) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# move labels to correct device to enable PP | |
labels = labels.to(lm_logits.device) | |
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
generation_config=None, | |
logits_processor=None, | |
stopping_criteria=None, | |
prefix_allowed_tokens_fn=None, | |
synced_gpus=False, | |
return_timestamps=None, | |
task=None, | |
language=None, | |
is_multilingual=None, | |
**kwargs, | |
): | |
""" | |
Generates sequences of token ids for models with a language modeling head. | |
<Tip warning={true}> | |
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. | |
For an overview of generation strategies and code examples, check out the [following | |
guide](./generation_strategies). | |
</Tip> | |
Parameters: | |
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): | |
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the | |
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` | |
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of | |
`input_ids`, `input_values`, `input_features`, or `pixel_values`. | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
logits_processor (`LogitsProcessorList`, *optional*): | |
Custom logits processors that complement the default logits processors built from arguments and | |
generation config. If a logit processor is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
stopping_criteria (`StoppingCriteriaList`, *optional*): | |
Custom stopping criteria that complement the default stopping criteria built from arguments and a | |
generation config. If a stopping criteria is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): | |
If provided, this function constraints the beam search to allowed tokens only at each step. If not | |
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and | |
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned | |
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful | |
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity | |
Retrieval](https://arxiv.org/abs/2010.00904). | |
synced_gpus (`bool`, *optional*, defaults to `False`): | |
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) | |
return_timestamps (`bool`, *optional*): | |
Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`. | |
task (`bool`, *optional*): | |
Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` | |
will be updated accordingly. | |
language (`bool`, *optional*): | |
Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can | |
find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. | |
is_multilingual (`bool`, *optional*): | |
Whether or not the model is multilingual. | |
kwargs: | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` | |
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. | |
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GreedySearchDecoderOnlyOutput`], | |
- [`~generation.SampleDecoderOnlyOutput`], | |
- [`~generation.BeamSearchDecoderOnlyOutput`], | |
- [`~generation.BeamSampleDecoderOnlyOutput`] | |
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GreedySearchEncoderDecoderOutput`], | |
- [`~generation.SampleEncoderDecoderOutput`], | |
- [`~generation.BeamSearchEncoderDecoderOutput`], | |
- [`~generation.BeamSampleEncoderDecoderOutput`] | |
""" | |
if generation_config is None: | |
generation_config = self.generation_config | |
if return_timestamps is not None: | |
if not hasattr(generation_config, "no_timestamps_token_id"): | |
raise ValueError( | |
"You are trying to return timestamps, but the generation config is not properly set." | |
"Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`." | |
"For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" | |
) | |
generation_config.return_timestamps = return_timestamps | |
else: | |
generation_config.return_timestamps = False | |
if language is not None: | |
language = language.lower() | |
generation_config.language = language | |
if task is not None: | |
generation_config.task = task | |
forced_decoder_ids = [] | |
if task is not None or language is not None: | |
if hasattr(generation_config, "language"): | |
if generation_config.language in generation_config.lang_to_id.keys(): | |
language_token = generation_config.language | |
elif generation_config.language in TO_LANGUAGE_CODE.keys(): | |
language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>" | |
elif generation_config.language in TO_LANGUAGE_CODE.values(): | |
language_token = f"<|{generation_config.language}|>" | |
else: | |
is_language_code = len(generation_config.language) == 2 | |
raise ValueError( | |
f"Unsupported language: {generation_config.language}. Language should be one of:" | |
f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." | |
) | |
forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) | |
else: | |
forced_decoder_ids.append((1, None)) # automatically detect the language | |
if hasattr(generation_config, "task"): | |
if generation_config.task in TASK_IDS: | |
forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) | |
else: | |
raise ValueError( | |
f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`" | |
) | |
else: | |
forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe | |
if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps: | |
idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 | |
forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) | |
# Legacy code for backward compatibility | |
elif hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None: | |
forced_decoder_ids = self.config.forced_decoder_ids | |
elif ( | |
hasattr(self.generation_config, "forced_decoder_ids") | |
and self.generation_config.forced_decoder_ids is not None | |
): | |
forced_decoder_ids = self.generation_config.forced_decoder_ids | |
if generation_config.return_timestamps: | |
logits_processor = [WhisperTimeStampLogitsProcessor(generation_config)] | |
if len(forced_decoder_ids) > 0: | |
generation_config.forced_decoder_ids = forced_decoder_ids | |
return super().generate( | |
inputs, | |
generation_config, | |
logits_processor, | |
stopping_criteria, | |
prefix_allowed_tokens_fn, | |
synced_gpus, | |
**kwargs, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
use_cache=None, | |
encoder_outputs=None, | |
attention_mask=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past is used | |
if past_key_values is not None: | |
decoder_input_ids = decoder_input_ids[:, -1:] | |
return { | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids, | |
"use_cache": use_cache, | |
"decoder_attention_mask": None, | |
} | |
# | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
return reordered_past | |
class WhisperForAudioClassification(WhisperPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.encoder = WhisperEncoder(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def freeze_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
not be updated during training. Only the projection layers and classification head will be updated. | |
""" | |
self.encoder._freeze_parameters() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.encoder.get_input_embeddings() | |
def set_input_embeddings(self, value: nn.Module): | |
self.encoder.set_input_embeddings(value) | |
def forward( | |
self, | |
input_features: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification | |
>>> from datasets import load_dataset | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") | |
>>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") | |
>>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) | |
>>> sample = next(iter(ds)) | |
>>> inputs = feature_extractor( | |
... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" | |
... ) | |
>>> input_features = inputs.input_features | |
>>> with torch.no_grad(): | |
... logits = model(input_features).logits | |
>>> predicted_class_ids = torch.argmax(logits).item() | |
>>> predicted_label = model.config.id2label[predicted_class_ids] | |
>>> predicted_label | |
'af_za' | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_features, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = torch.stack(encoder_outputs, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = encoder_outputs[0] | |
hidden_states = self.projector(hidden_states) | |
pooled_output = hidden_states.mean(dim=1) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# move labels to correct device to enable PP | |
labels = labels.to(logits.device) | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + encoder_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) |