root
initial commit
a344f64
import argparse
import functools
import glob
import os
import random
import string
import json
import sys
sys.path.append('../')
from tqdm import tqdm
import yaml
from collections import defaultdict
import io
import warnings
import subprocess
import pickle
import numpy as np
import torch
from data.data import get_audiotext_dataloader
from src.factory import create_model_and_transforms
from train.train_utils import Dict2Class, get_autocast, get_cast_dtype
def inference_this(
args, data_config, clap_config, model_config, test_dataset_name, tmp_file,
temperature=1.0, num_beams=3, ckpt=-1, end_batch_idx=-2, verbose=False,
):
os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable the tokenizer parallelism warning
model, tokenizer = create_model_and_transforms(
**model_config,
clap_config=clap_config,
use_local_files=args.offline,
gradient_checkpointing=args.gradient_checkpointing,
freeze_lm_embeddings=args.freeze_lm_embeddings,
)
device_id = 0
model = model.to(device_id)
model.eval()
if ckpt == -1:
checkpoint_list = glob.glob(f"{args.expdir}/{args.run_name}/checkpoint_*.pt")
resume_from_checkpoint = sorted(checkpoint_list, key=lambda x: int(x.split("_")[-1].split(".")[0]))[-1]
else:
resume_from_checkpoint = f"{args.expdir}/{args.run_name}/checkpoint_{ckpt}.pt"
checkpoint = torch.load(resume_from_checkpoint, map_location="cpu")
msd = checkpoint["model_state_dict"]
msd = {k.replace("module.", ""): v for k, v in msd.items()}
x,y = model.load_state_dict(msd, False)
print(x)
print(y)
autocast = get_autocast(
args.precision, cache_enabled=(not args.fsdp)
)
cast_dtype = get_cast_dtype(args.precision)
# model = model.to(dtype=cast_dtype)
if test_dataset_name in data_config["valid_dataset_config"]:
data_config["valid_dataset_config"] = {test_dataset_name: data_config["valid_dataset_config"][test_dataset_name]}
else:
data_config["valid_dataset_config"] = {test_dataset_name: True}
all_test_AudioTextDataInfo = get_audiotext_dataloader(data_config, clap_config, tokenizer, args.batch_size, split='test')
assert test_dataset_name in list(all_test_AudioTextDataInfo.keys()), "{} not a test set".format(test_dataset_name)
dataloader = all_test_AudioTextDataInfo[test_dataset_name].dataloader
deduplicate_tasks = ["Clotho-v2-AudioCaptioning", "audiocaps-AudioCaptioning", "MACS-AudioCaptioning", "LP-MusicCaps-MSD-AudioCaptioning", "LP-MusicCaps-MC-AudioCaptioning"]
if any([test_dataset_name.startswith(x) for x in deduplicate_tasks]):
deduplicate = True
else:
deduplicate = False
if os.path.exists(tmp_file):
with open(tmp_file, 'rb') as pickle_file:
tmp_data = pickle.load(pickle_file)
results_dic = tmp_data['results_dic']
results = tmp_data['results']
finished_batches = tmp_data['finished_batches']
print('reading tmp data from {}: {} batches already computed'.format(tmp_file, finished_batches+1))
else:
tmp_data = {}
results_dic = {} # for deduplicate
results = [] # for non-deduplicate
finished_batches = -1
print('no tmp data found; will store tmp data to {}'.format(tmp_file))
# print(len(dataloader))
# print('---------------------')
from itertools import islice
for batch_idx, batch in tqdm(enumerate(islice(dataloader, finished_batches, None), start=finished_batches)):
# for batch_idx, batch in tqdm(enumerate(dataloader)):
if end_batch_idx > 0 and batch_idx == end_batch_idx:
break
if batch_idx <= finished_batches:
continue
audio_clips = batch["audio_clips"].to(device_id, dtype=cast_dtype, non_blocking=True)
audio_embed_mask = batch["audio_embed_mask"].to(device_id, dtype=cast_dtype, non_blocking=True)
input_ids = batch["input_ids"].to(device_id, non_blocking=True)
filenames = batch["filenames"]
# print(input_ids)
media_token_id = tokenizer.encode("<audio>")[-1]
sep_token_id = tokenizer.sep_token_id
for idx in range(input_ids.shape[0]):
filename = filenames[idx]
if type(filename) is list:
# interleaved data
filename = filename[-1]
input_id = input_ids[idx]
for sep_location in range(len(input_id)-1, -1, -1):
# find last <SEP>
if input_id[sep_location] == sep_token_id:
break
# print(tokenizer.decode(input_id))
prompt = input_id[:sep_location+1]
prompt_decoded = tokenizer.decode(prompt).replace(tokenizer.sep_token, '')
ground_truth_decoded = tokenizer.decode(input_id).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '')
if not (deduplicate and (filename, prompt_decoded) in results_dic):
# print(prompt)
# print(prompt_decoded)
output = model.generate(
audio_x=audio_clips[idx].unsqueeze(0),
audio_x_mask=audio_embed_mask[idx].unsqueeze(0),
lang_x=prompt.unsqueeze(0),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=256,
temperature=temperature,
)[0]
output_decoded = tokenizer.decode(output).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '')
# print(ground_truth_decoded)
# print('------')
# print(output_decoded)
if deduplicate:
if (filename, prompt_decoded) in results_dic:
results_dic[(filename, prompt_decoded)]['ground_truth'].append(ground_truth_decoded)
else:
results_dic[(filename, prompt_decoded)] = {
'ground_truth': [ground_truth_decoded],
'output': output_decoded
}
else:
results.append((filename, prompt_decoded, ground_truth_decoded, output_decoded))
tmp_data['results_dic'] = results_dic
tmp_data['results'] = results
tmp_data['finished_batches'] = batch_idx
with open(tmp_file, 'wb') as pickle_file:
pickle.dump(tmp_data, pickle_file)
if deduplicate:
for (filename, prompt) in results_dic:
ground_truth = '|'.join(results_dic[(filename, prompt)]['ground_truth'])
output = results_dic[(filename, prompt)]['output']
results.append((filename, prompt, ground_truth, output))
# if verbose:
# for filename, prompt, ground_truth, output in results:
# print('-'*30)
# print('filename:', filename)
# print('prompt:', prompt)
# print('ground_truth:', ground_truth)
# print('output:', output)
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='../config/config.yaml', help='yaml config path')
parser.add_argument('-t', '--task', type=str, help='which task to inference')
parser.add_argument('-temp', '--temperature', type=float, default=1.0, help='temperature')
parser.add_argument('-nb', '--num_beams', type=int, default=1, help='num beams for beam search')
parser.add_argument('--ckpt', type=int, default=-1, help='checkpoint idx, -1 means latest')
parsed_args = parser.parse_args()
print(parsed_args)
test_dataset_name = parsed_args.task
output_file = os.path.join(
'../outputs/',
parsed_args.task.replace('/', '-'),
'{}-ckpt{}-{}.log'.format(
parsed_args.config.split('/')[-1][:-5],
parsed_args.ckpt,
"sft"
)
)
tmp_file = output_file.replace('.log', '.tmp.pickle')
print('output file:', output_file)
print('no previous log file; generating samples')
config = yaml.load(open(parsed_args.config), Loader=yaml.FullLoader)
# print(config)
# print('----------------------')
data_config = config['data_config']
model_config = config['model_config']
print(model_config)
clap_config = config['clap_config']
clap_config = config['clap_config']
mert_config = config['mert_config']
args = Dict2Class(config['train_config'])
results = inference_this(
args, data_config, clap_config, model_config, test_dataset_name,
temperature=float(parsed_args.temperature),
num_beams=int(parsed_args.num_beams),
ckpt=parsed_args.ckpt,
verbose=True,
tmp_file=tmp_file,
)
if __name__ == "__main__":
main()