Spaces:
Build error
Build error
File size: 12,326 Bytes
92740f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
# Adapted from https://github.com/mlfoundations/open_flamingo under the MIT license.
# LICENSE is in incl_licenses directory.
# Adapted from https://github.com/lucidrains/flamingo-pytorch under the MIT license.
# LICENSE is in incl_licenses directory.
# Adapted from https://github.com/jadore801120/attention-is-all-you-need-pytorch under the MIT license.
# LICENSE is in incl_licenses directory.
from einops import rearrange, repeat
from einops_exts import rearrange_many
import numpy as np
import torch
from torch import einsum, nn
import torch.nn.functional as F
def exists(val):
return val is not None
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q, attn = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
q = self.dropout(self.fc(q))
q += residual
q = self.layer_norm(q)
return q, attn
class PositionwiseFeedForward(nn.Module):
''' A two-feed-forward-layer module '''
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.w_2(F.relu(self.w_1(x)))
x = self.dropout(x)
x += residual
x = self.layer_norm(x)
return x
class PositionalEncoding(nn.Module):
def __init__(self, d_hid, n_position=200):
super(PositionalEncoding, self).__init__()
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
def _get_sinusoid_encoding_table(self, n_position, d_hid):
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
def forward(self, x):
return x + self.pos_table[:, :x.size(1)].clone().detach()
class EncoderLayer(nn.Module):
''' Compose with two layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output, enc_slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output, enc_slf_attn
class TransformerEncoder(nn.Module):
''' A encoder model with self attention mechanism. '''
def __init__(
self, d_word_vec=512, n_layers=6, n_head=8, d_k=64, d_v=64,
d_model=512, d_inner=2048, dropout=0.0, n_position=16, scale_emb=True):
super().__init__()
if n_position > 0:
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
else:
self.position_enc = lambda x: x
self.dropout = nn.Dropout(p=dropout)
self.layer_stack = nn.ModuleList([
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)])
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.scale_emb = scale_emb
self.d_model = d_model
def forward(self, src_seq, return_attns=False):
if len(src_seq.shape) == 2:
src_seq = src_seq.unsqueeze(1)
B, L, D = src_seq.shape
enc_slf_attn_list = []
causal_mask = None
enc_output = src_seq
if self.scale_emb:
enc_output = enc_output * self.d_model ** 0.5
enc_output = self.dropout(self.position_enc(enc_output))
enc_output = self.layer_norm(enc_output)
for enc_layer in self.layer_stack:
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=causal_mask)
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
if return_attns:
return enc_output, enc_slf_attn_list
return enc_output
# gated cross attention
class MaskedCrossAttention(nn.Module):
def __init__(
self,
*,
dim,
dim_audio,
max_window_per_audio,
dim_head=64,
heads=8,
only_attend_immediate_media=True,
):
super().__init__()
self.max_window_per_audio = max_window_per_audio
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim_audio, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
self.only_attend_immediate_media = only_attend_immediate_media
def forward(
self,
x,
media, media_mask,
media_locations=None,
use_cached_media=False
):
if not use_cached_media:
assert (
media_locations.shape[1] == x.shape[1]
), f"media_location.shape is {media_locations.shape} but x.shape is {x.shape}"
T_txt = x.shape[1]
B, L = media.shape[:2]
assert media.shape[2] == 1 # extra dim
assert L % self.max_window_per_audio == 0 # should be 4 or 8 times
h = self.heads
x = self.norm(x)
q = self.to_q(x)
media = rearrange(media, "b t n d -> b (t n) d")
k, v = self.to_kv(media).chunk(2, dim=-1)
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)
q = q * self.scale
sim = einsum("... i d, ... j d -> ... i j", q, k)
# mask padded audio embeddings
media_mask = rearrange(media_mask, "b i n -> b 1 1 (i n)").bool() # n = 1 is extra dim
sim = sim.masked_fill(~media_mask, -torch.finfo(sim.dtype).max)
assert self.only_attend_immediate_media is False
# mask media locations
if exists(media_locations):
few_shot_mask = torch.zeros(B, T_txt, L).bool().to(sim.device)
for batch_idx in range(B):
media_locations_b = media_locations[batch_idx].nonzero() # locations of <audio>
if len(media_locations_b.shape) > 1:
media_locations_b = media_locations_b.squeeze(-1)
for i in range(-1, len(media_locations_b)):
if i == -1:
if len(media_locations_b) == 1:
text_start, text_end = 0, T_txt
else:
text_start, text_end = 0, media_locations_b[i+1]
elif i == len(media_locations_b) - 1:
text_start, text_end = media_locations_b[i], T_txt
else:
text_start, text_end = media_locations_b[i], media_locations_b[i+1]
if self.only_attend_immediate_media:
look_at_window_start = max(i,0) * self.max_window_per_audio
else:
look_at_window_start = 0
look_at_window_end = (max(i,0) + 1) * self.max_window_per_audio
few_shot_mask[batch_idx, text_start:text_end, look_at_window_start:look_at_window_end] = True
sim = sim.masked_fill(~few_shot_mask.unsqueeze(1), -torch.finfo(sim.dtype).max)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
if exists(media_locations) and self.only_attend_immediate_media:
text_without_media_mask = text_time == 0
text_without_media_mask = rearrange(
text_without_media_mask, "b i -> b 1 i 1"
)
attn = attn.masked_fill(text_without_media_mask, 0.0)
out = einsum("... i j, ... j d -> ... i d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
class GatedCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
dim,
dim_audio,
max_window_per_audio,
dim_head=64,
heads=8,
ff_mult=4,
only_attend_immediate_media=True,
):
super().__init__()
self.attn = MaskedCrossAttention(
dim=dim,
dim_audio=dim_audio,
max_window_per_audio=max_window_per_audio,
dim_head=dim_head,
heads=heads,
only_attend_immediate_media=only_attend_immediate_media,
)
self.attn_gate = nn.Parameter(torch.tensor([0.0]))
self.ff = FeedForward(dim, mult=ff_mult)
self.ff_gate = nn.Parameter(torch.tensor([0.0]))
def forward(
self,
x,
media,
media_mask,
media_locations=None,
use_cached_media=False,
):
x = (
self.attn(
x,
media,
media_mask,
media_locations=media_locations,
use_cached_media=use_cached_media,
)
* self.attn_gate.tanh()
+ x
)
x = self.ff(x) * self.ff_gate.tanh() + x
return x
if __name__ == '__main__':
enc = TransformerEncoder().cuda()
x = torch.randn(4, 512).cuda()
output = enc(x)
enc._use_gradient_checkpointing = True
print(output.shape) |