import spaces import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM title = """# Minitron-8B-Base Story Generator""" description = """ # Minitron Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models. # Short Story Generator Welcome to the Short Story Generator! This application helps you create unique short stories based on your inputs. **Instructions:** 1. **Main Character:** Describe the main character of your story. For example, "a brave knight" or "a curious cat". 2. **Setting:** Describe the setting where your story takes place. For example, "in an enchanted forest" or "in a bustling city". 3. **Plot Twist:** Add an interesting plot twist to make the story exciting. For example, "discovers a hidden treasure" or "finds a secret portal to another world". After filling in these details, click the "Submit" button, and a short story will be generated for you. """ inputs = [ gr.Textbox(label="Main Character", placeholder="e.g. a brave knight"), gr.Textbox(label="Setting", placeholder="e.g. in an enchanted forest"), gr.Textbox(label="Plot Twist", placeholder="e.g. discovers a hidden treasure"), gr.Slider(minimum=1, maximum=2048, value=64, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ] outputs = gr.Textbox(label="Generated Story") # Load the tokenizer and model model_path = "nvidia/Minitron-8B-Base" tokenizer = AutoTokenizer.from_pretrained(model_path) device='cuda' dtype=torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) # Define the prompt format def create_prompt(instruction): PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:''' return PROMPT.format(instruction=instruction) @spaces.GPU def respond(message, history, system_message, max_tokens, temperature, top_p): prompt = create_prompt(message) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return output_text @spaces.GPU def generate_story(character, setting, plot_twist, max_tokens, temperature, top_p): """Define the function to generate the story.""" prompt = f"Write a short story with the following details:\nMain character: {character}\nSetting: {setting}\nPlot twist: {plot_twist}\n\nStory:" input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) output_ids = model.generate(input_ids, max_length=max_tokens, num_return_sequences=1, temperature=temperature, top_p=top_p) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return output_text #demo = gr.ChatInterface( # title=gr.Markdown(title), # description=gr.Markdown(description), # fn=generate_story, # additional_inputs=[ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") # ], #) # Create the Gradio interface demo = gr.Interface( fn=generate_story, inputs=inputs, outputs=outputs, title="Short Story Generator", description=description ) if __name__ == "__main__": demo.launch()