File size: 10,574 Bytes
d1e57c0
2de3215
d1e57c0
 
 
 
8b56af0
bbe5ab2
2de3215
bbe5ab2
2de3215
 
8b56af0
 
 
2de3215
 
8b56af0
 
2de3215
 
 
 
 
 
 
8b56af0
2de3215
 
8b56af0
2de3215
 
271fef8
2de3215
 
 
271fef8
2de3215
 
271fef8
2de3215
271fef8
2de3215
271fef8
2de3215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420cd1
2de3215
 
 
 
 
 
 
 
 
 
271fef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de3215
 
271fef8
2de3215
 
271fef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de3215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271fef8
 
 
a31fb38
2de3215
 
 
271fef8
2de3215
 
 
 
 
 
271fef8
2de3215
271fef8
 
 
 
 
 
 
 
2de3215
 
 
 
 
 
 
 
271fef8
703aea5
2de3215
 
 
 
 
 
 
 
703aea5
2de3215
 
 
 
 
 
703aea5
 
 
2de3215
 
 
 
 
271fef8
703aea5
2de3215
 
703aea5
2de3215
271fef8
 
 
 
 
2de3215
271fef8
 
ee2641c
 
271fef8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import requests

# Disable JIT
os.environ["PYTORCH_JIT"] = "0"

from einops import rearrange
import gradio as gr 
import numpy as np
import spaces
import torch 
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoModel, CLIPImageProcessor
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from segment_anything.modeling.image_encoder import ImageEncoderViT


class RADIOVenc(nn.Module):
    def __init__(self, radio: nn.Module, img_enc: ImageEncoderViT, img_size: int = 1024):
        super().__init__()
        self.radio = radio
        self.neck = img_enc.neck
        self.img_size = img_size
        self.dtype = radio.input_conditioner.dtype

    def forward(self, x: torch.Tensor):
        h, w = x.shape[-2:]

        if self.dtype is not None:
            x = x.to(dtype=self.dtype)

        with torch.autocast('cuda', dtype=torch.bfloat16, enabled=self.dtype is None):
            output = self.radio(x)
        features = output["sam"].features

        rows = h // 16
        cols = w // 16

        features = rearrange(features, 'b (h w) c -> b c h w', h=rows, w=cols)

        features = self.neck(features)

        return features

    
def download_file(url, save_path):
    # Check if the file already exists
    if os.path.exists(save_path):
        print(f"File already exists at {save_path}. Skipping download.")
        return
    
    print(f"Downloading from {url}")

    # Send a GET request to the URL
    response = requests.get(url, stream=True)
    
    # Check if the request was successful
    if response.status_code == 200:
        # Open the file in binary write mode
        with open(save_path, 'wb') as file:
            # Iterate over the response content in chunks
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:  # filter out keep-alive new chunks
                    file.write(chunk)
        print(f"File downloaded successfully and saved as {save_path}")
    else:
        print(f"Failed to download file. HTTP Status Code: {response.status_code}")
    

hf_repo = "nvidia/RADIO-L"
image_processor = CLIPImageProcessor.from_pretrained(hf_repo)

model_version = "radio_v2.5-l" # for RADIOv2.5-L model (ViT-L/16)

model = torch.hub.load(
    'NVlabs/RADIO',
    'radio_model',
    version=model_version,
    progress=True,
    skip_validation=True,
    adaptor_names='sam')
model.eval()
    
local_sam_checkpoint_path = "sam_vit_h_4b8939.pth"
download_file("https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", local_sam_checkpoint_path)    
sam = sam_model_registry["vit_h"](checkpoint=local_sam_checkpoint_path)
model._patch_size = 16
sam.image_encoder = RADIOVenc(model, sam.image_encoder, img_size=1024)
conditioner = model.make_preprocessor_external()    
sam.pixel_mean = conditioner.norm_mean * 255
sam.pixel_std = conditioner.norm_std * 255


def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False):
    # features: (N, C)
    # m: a hyperparam controlling how many std dev outside for outliers
    assert len(features.shape) == 2, "features should be (N, C)"
    reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2]
    colors = features @ reduction_mat
    if remove_first_component:
        colors_min = colors.min(dim=0).values
        colors_max = colors.max(dim=0).values
        tmp_colors = (colors - colors_min) / (colors_max - colors_min)
        fg_mask = tmp_colors[..., 0] < 0.2
        reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2]
        colors = features @ reduction_mat
    else:
        fg_mask = torch.ones_like(colors[:, 0]).bool()
    d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values)
    mdev = torch.median(d, dim=0).values
    s = d / mdev
    try:
        rins = colors[fg_mask][s[:, 0] < m, 0]
        gins = colors[fg_mask][s[:, 1] < m, 1]
        bins = colors[fg_mask][s[:, 2] < m, 2]
        rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
        rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
    except:
        rins = colors
        gins = colors
        bins = colors
        rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
        rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])

    return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat)


def get_pca_map(
    feature_map: torch.Tensor,
    img_size,
    interpolation="bicubic",
    return_pca_stats=False,
    pca_stats=None,
):
    """
    feature_map: (1, h, w, C) is the feature map of a single image.
    """
    if feature_map.shape[0] != 1:
        # make it (1, h, w, C)
        feature_map = feature_map[None]
    if pca_stats is None:
        reduct_mat, color_min, color_max = get_robust_pca(
            feature_map.reshape(-1, feature_map.shape[-1])
        )
    else:
        reduct_mat, color_min, color_max = pca_stats
    pca_color = feature_map @ reduct_mat
    pca_color = (pca_color - color_min) / (color_max - color_min)
    pca_color = pca_color.clamp(0, 1)
    pca_color = F.interpolate(
        pca_color.permute(0, 3, 1, 2),
        size=img_size,
        mode=interpolation,
    ).permute(0, 2, 3, 1)
    pca_color = pca_color.cpu().numpy().squeeze(0)
    if return_pca_stats:
        return pca_color, (reduct_mat, color_min, color_max)
    return pca_color


def pad_image_to_multiple_of(image, multiple=16):
    # Calculate the new dimensions to make them multiples
    width, height = image.size
    new_width = (width + multiple -1) // multiple * multiple
    new_height = (height + multiple -1) // multiple * multiple

    # Calculate the padding needed on each side
    pad_width = new_width - width
    pad_height = new_height - height

    left = pad_width // 2
    right = pad_width - left
    top = pad_height // 2
    bottom = pad_height - top

    # Apply the padding
    padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black')

    return padded_image


def center_crop_resize(image, size=(1024, 1024)):
    # Get dimensions
    width, height = image.size
    
    # Determine the center crop box
    if width > height:
        new_width = height
        new_height = height
        left = (width - new_width) / 2
        top = 0
        right = (width + new_width) / 2
        bottom = height
    else:
        new_width = width
        new_height = width
        left = 0
        top = (height - new_height) / 2
        right = width
        bottom = (height + new_height) / 2
    
    # Crop the image to a square
    image = image.crop((left, top, right, bottom))
    
    # Resize the cropped image to the target size
    image = image.resize(size, Image.LANCZOS)
        
    return image


def visualize_anns(orig_image: np.ndarray, anns):
    if len(anns) == 0:
        return orig_image
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)

    kernel = torch.ones(1, 1, 5, 5, dtype=torch.float32)

    # RGBA
    mask = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4), dtype=np.float32)
    mask[:,:,3] = 0
    for ann in sorted_anns:
        m = ann['segmentation']
        color_mask = np.concatenate([np.random.random(3), [0.35]])

        tm = torch.as_tensor(m).reshape(1, 1, *m.shape).float()
        cvtm = F.conv2d(tm, kernel, padding=2)

        border_mask = (cvtm < 25).flatten(0, 2).numpy()

        mask[m] = color_mask
        mask[m & border_mask, 3] *= 1.0 / 0.35

    color, alpha = mask[..., :3], mask[..., -1:]

    orig_image = orig_image.astype(np.float32) / 255
    overlay = alpha * color + (1 - alpha) * orig_image

    overlay = (overlay * 255).astype(np.uint8)
    return overlay



@spaces.GPU 
def infer_radio(image):
    """Define the function to generate the output."""
    model.cuda()
    conditioner.cuda()
    sam.cuda()
    sam_generator = SamAutomaticMaskGenerator(sam, output_mode="binary_mask")
    
    # PCA feature visalization
    padded_image=pad_image_to_multiple_of(image, multiple=256)
    width, height = padded_image.size
    pixel_values = image_processor(images=padded_image, return_tensors='pt').pixel_values
    pixel_values = pixel_values.to(torch.bfloat16).cuda()
    pixel_values = conditioner(pixel_values)
    
    _, features = model(pixel_values)["backbone"]    
    
    num_rows = height // model.patch_size
    num_cols = width // model.patch_size
    
    features = features.detach()
    features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float()
    
    pca_viz = get_pca_map(features, (height, width), interpolation='bilinear')
    
    # SAM feature visualization
    resized_image = center_crop_resize(image)
    image_array = np.array(image)
    print("image size", image_array.shape)
    #image_array = np.transpose(image_array, (2, 0, 1))
    masks = sam_generator.generate(image_array)
    overlay = visualize_anns(image_array, masks)
      
    return pca_viz, overlay, f"{features.shape}"



title = """RADIO: Reduce All Domains Into One"""

description = """
# RADIO

[AM-RADIO](https://github.com/NVlabs/RADIO) is a framework to distill Large Vision Foundation models into a single one.
RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones.
Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence.
Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images.

# Instructions

Paste an image into the input box or pick one from the gallery of examples and then click the "Submit" button.
The RADIO backbone features are processed with a PCA projection to 3 channels and displayed as an RGB channels.
The SAM features are processed using the SAM decoder and shown as an overlay on top of the input image.
"""

inputs = [
    gr.Image(type="pil")
]

outputs = [    
    gr.Image(label="PCA Feature Visalization"),
    gr.Image(label="SAM Masks"),
    gr.Textbox(label="Feature Shape"),
]

# Create the Gradio interface
demo = gr.Interface(
    fn=infer_radio,
    inputs=inputs,
    examples="./samples/",
    outputs=outputs,
    title=title,
    description=description,
    cache_examples=False
)
  
if __name__ == "__main__":  
    demo.launch()