radio / app.py
gheinrich's picture
Update app.py
a31fb38 verified
raw
history blame
5.72 kB
import os
# Disable JIT
os.environ["PYTORCH_JIT"] = "0"
from einops import rearrange
import gradio as gr
import spaces
import torch
import torch.nn.functional as F
from PIL import Image, ImageOps
from transformers import AutoModel, CLIPImageProcessor
hf_repo = "nvidia/RADIO-L"
image_processor = CLIPImageProcessor.from_pretrained(hf_repo)
model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True)
model.eval()
title = """RADIO: Reduce All Domains Into One"""
description = """
# RADIO
AM-RADIO is a framework to distill Large Vision Foundation models into a single one.
RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones.
Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence.
Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images.
# Instructions
Simply paste an image or pick one from the gallery of examples and then click the "Submit" button.
"""
inputs = [
gr.Image(type="pil")
]
examples = [
"samples/IMG_0996.jpeg",
"samples/IMG_1061.jpeg",
"samples/IMG_1338.jpeg",
"samples/IMG_4319.jpeg",
"samples/IMG_5104.jpeg",
"samples/IMG_5139.jpeg",
"samples/IMG_6225.jpeg",
"samples/IMG_6814.jpeg",
"samples/IMG_7459.jpeg",
"samples/IMG_7577.jpeg",
"samples/IMG_7687.jpeg",
"samples/IMG_9862.jpeg",
]
outputs = [
gr.Textbox(label="Feature Shape"),
gr.Image(),
]
def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False):
# features: (N, C)
# m: a hyperparam controlling how many std dev outside for outliers
assert len(features.shape) == 2, "features should be (N, C)"
reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2]
colors = features @ reduction_mat
if remove_first_component:
colors_min = colors.min(dim=0).values
colors_max = colors.max(dim=0).values
tmp_colors = (colors - colors_min) / (colors_max - colors_min)
fg_mask = tmp_colors[..., 0] < 0.2
reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2]
colors = features @ reduction_mat
else:
fg_mask = torch.ones_like(colors[:, 0]).bool()
d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values)
mdev = torch.median(d, dim=0).values
s = d / mdev
try:
rins = colors[fg_mask][s[:, 0] < m, 0]
gins = colors[fg_mask][s[:, 1] < m, 1]
bins = colors[fg_mask][s[:, 2] < m, 2]
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
except:
rins = colors
gins = colors
bins = colors
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat)
def get_pca_map(
feature_map: torch.Tensor,
img_size,
interpolation="bicubic",
return_pca_stats=False,
pca_stats=None,
):
"""
feature_map: (1, h, w, C) is the feature map of a single image.
"""
if feature_map.shape[0] != 1:
# make it (1, h, w, C)
feature_map = feature_map[None]
if pca_stats is None:
reduct_mat, color_min, color_max = get_robust_pca(
feature_map.reshape(-1, feature_map.shape[-1])
)
else:
reduct_mat, color_min, color_max = pca_stats
pca_color = feature_map @ reduct_mat
pca_color = (pca_color - color_min) / (color_max - color_min)
pca_color = pca_color.clamp(0, 1)
pca_color = F.interpolate(
pca_color.permute(0, 3, 1, 2),
size=img_size,
mode=interpolation,
).permute(0, 2, 3, 1)
pca_color = pca_color.cpu().numpy().squeeze(0)
if return_pca_stats:
return pca_color, (reduct_mat, color_min, color_max)
return pca_color
def pad_image_to_multiple_of_16(image):
# Calculate the new dimensions to make them multiples of 16
width, height = image.size
new_width = (width + 15) // 16 * 16
new_height = (height + 15) // 16 * 16
# Calculate the padding needed on each side
pad_width = new_width - width
pad_height = new_height - height
left = pad_width // 2
right = pad_width - left
top = pad_height // 2
bottom = pad_height - top
# Apply the padding
padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black')
return padded_image
@spaces.GPU
def infer_radio(image):
"""Define the function to generate the output."""
model.cuda()
image=pad_image_to_multiple_of_16(image)
width, height = image.size
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
_, features = model(pixel_values)
num_rows = height // model.patch_size
num_cols = width // model.patch_size
features = features.detach()
features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float()
pca_viz = get_pca_map(features, (height, width), interpolation='bilinear')
return f"{features.shape}", pca_viz
# Create the Gradio interface
demo = gr.Interface(
fn=infer_radio,
inputs=inputs,
examples=examples,
outputs=outputs,
title=title,
description=description
)
if __name__ == "__main__":
demo.launch()