|
import os |
|
|
|
|
|
os.environ["PYTORCH_JIT"] = "0" |
|
|
|
from einops import rearrange |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
import torch.nn.functional as F |
|
from PIL import Image, ImageOps |
|
from transformers import AutoModel, CLIPImageProcessor |
|
|
|
hf_repo = "nvidia/RADIO-L" |
|
|
|
image_processor = CLIPImageProcessor.from_pretrained(hf_repo) |
|
model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True) |
|
model.eval() |
|
|
|
|
|
title = """RADIO: Reduce All Domains Into One""" |
|
description = """ |
|
# RADIO |
|
|
|
AM-RADIO is a framework to distill Large Vision Foundation models into a single one. |
|
RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones. |
|
Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence. |
|
Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images. |
|
|
|
# Instructions |
|
|
|
Simply paste an image or pick one from the gallery of examples and then click the "Submit" button. |
|
""" |
|
|
|
inputs = [ |
|
gr.Image(type="pil") |
|
] |
|
|
|
examples = [ |
|
"samples/IMG_0996.jpeg", |
|
"samples/IMG_1061.jpeg", |
|
"samples/IMG_1338.jpeg", |
|
"samples/IMG_4319.jpeg", |
|
"samples/IMG_5104.jpeg", |
|
"samples/IMG_5139.jpeg", |
|
"samples/IMG_6225.jpeg", |
|
"samples/IMG_6814.jpeg", |
|
"samples/IMG_7459.jpeg", |
|
"samples/IMG_7577.jpeg", |
|
"samples/IMG_7687.jpeg", |
|
"samples/IMG_9862.jpeg", |
|
] |
|
|
|
outputs = [ |
|
gr.Textbox(label="Feature Shape"), |
|
gr.Image(), |
|
] |
|
|
|
def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False): |
|
|
|
|
|
assert len(features.shape) == 2, "features should be (N, C)" |
|
reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2] |
|
colors = features @ reduction_mat |
|
if remove_first_component: |
|
colors_min = colors.min(dim=0).values |
|
colors_max = colors.max(dim=0).values |
|
tmp_colors = (colors - colors_min) / (colors_max - colors_min) |
|
fg_mask = tmp_colors[..., 0] < 0.2 |
|
reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2] |
|
colors = features @ reduction_mat |
|
else: |
|
fg_mask = torch.ones_like(colors[:, 0]).bool() |
|
d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values) |
|
mdev = torch.median(d, dim=0).values |
|
s = d / mdev |
|
try: |
|
rins = colors[fg_mask][s[:, 0] < m, 0] |
|
gins = colors[fg_mask][s[:, 1] < m, 1] |
|
bins = colors[fg_mask][s[:, 2] < m, 2] |
|
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()]) |
|
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()]) |
|
except: |
|
rins = colors |
|
gins = colors |
|
bins = colors |
|
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()]) |
|
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()]) |
|
|
|
return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat) |
|
|
|
|
|
def get_pca_map( |
|
feature_map: torch.Tensor, |
|
img_size, |
|
interpolation="bicubic", |
|
return_pca_stats=False, |
|
pca_stats=None, |
|
): |
|
""" |
|
feature_map: (1, h, w, C) is the feature map of a single image. |
|
""" |
|
if feature_map.shape[0] != 1: |
|
|
|
feature_map = feature_map[None] |
|
if pca_stats is None: |
|
reduct_mat, color_min, color_max = get_robust_pca( |
|
feature_map.reshape(-1, feature_map.shape[-1]) |
|
) |
|
else: |
|
reduct_mat, color_min, color_max = pca_stats |
|
pca_color = feature_map @ reduct_mat |
|
pca_color = (pca_color - color_min) / (color_max - color_min) |
|
pca_color = pca_color.clamp(0, 1) |
|
pca_color = F.interpolate( |
|
pca_color.permute(0, 3, 1, 2), |
|
size=img_size, |
|
mode=interpolation, |
|
).permute(0, 2, 3, 1) |
|
pca_color = pca_color.cpu().numpy().squeeze(0) |
|
if return_pca_stats: |
|
return pca_color, (reduct_mat, color_min, color_max) |
|
return pca_color |
|
|
|
|
|
def pad_image_to_multiple_of_16(image): |
|
|
|
width, height = image.size |
|
new_width = (width + 15) // 16 * 16 |
|
new_height = (height + 15) // 16 * 16 |
|
|
|
|
|
pad_width = new_width - width |
|
pad_height = new_height - height |
|
|
|
left = pad_width // 2 |
|
right = pad_width - left |
|
top = pad_height // 2 |
|
bottom = pad_height - top |
|
|
|
|
|
padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black') |
|
|
|
return padded_image |
|
|
|
|
|
@spaces.GPU |
|
def infer_radio(image): |
|
"""Define the function to generate the output.""" |
|
model.cuda() |
|
image=pad_image_to_multiple_of_16(image) |
|
width, height = image.size |
|
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values |
|
pixel_values = pixel_values.to(torch.bfloat16).cuda() |
|
|
|
_, features = model(pixel_values) |
|
|
|
|
|
num_rows = height // model.patch_size |
|
num_cols = width // model.patch_size |
|
|
|
features = features.detach() |
|
features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float() |
|
|
|
pca_viz = get_pca_map(features, (height, width), interpolation='bilinear') |
|
|
|
return f"{features.shape}", pca_viz |
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn=infer_radio, |
|
inputs=inputs, |
|
examples=examples, |
|
outputs=outputs, |
|
title=title, |
|
description=description |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|