Spaces:
Running
on
T4
Running
on
T4
import random | |
import tempfile | |
import time | |
import gradio as gr | |
import numpy as np | |
import torch | |
import math | |
import re | |
from gradio import inputs | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
UNet2DConditionModel, | |
) | |
from modules.model import ( | |
CrossAttnProcessor, | |
StableDiffusionPipeline, | |
) | |
from torchvision import transforms | |
from transformers import CLIPTokenizer, CLIPTextModel | |
from PIL import Image | |
from pathlib import Path | |
from safetensors.torch import load_file | |
import modules.safe as _ | |
from modules.lora import LoRANetwork | |
models = [ | |
("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF", 2), | |
("Pastal Mix", "andite/pastel-mix", 2), | |
("Basil Mix", "nuigurumi/basil_mix", 2), | |
] | |
alt_models = [] | |
base_name, base_model, clip_skip = models[0] | |
samplers_k_diffusion = [ | |
("Euler a", "sample_euler_ancestral", {}), | |
("Euler", "sample_euler", {}), | |
("LMS", "sample_lms", {}), | |
("Heun", "sample_heun", {}), | |
("DPM2", "sample_dpm_2", {"discard_next_to_last_sigma": True}), | |
("DPM2 a", "sample_dpm_2_ancestral", {"discard_next_to_last_sigma": True}), | |
("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}), | |
("DPM++ 2M", "sample_dpmpp_2m", {}), | |
("DPM++ SDE", "sample_dpmpp_sde", {}), | |
("LMS Karras", "sample_lms", {"scheduler": "karras"}), | |
("DPM2 Karras", "sample_dpm_2", {"scheduler": "karras", "discard_next_to_last_sigma": True}), | |
("DPM2 a Karras", "sample_dpm_2_ancestral", {"scheduler": "karras", "discard_next_to_last_sigma": True}), | |
("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}), | |
("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}), | |
("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}), | |
] | |
# samplers_diffusers = [ | |
# ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {}) | |
# ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {}) | |
# ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {}) | |
# ] | |
start_time = time.time() | |
timeout = 120 | |
scheduler = DDIMScheduler.from_pretrained( | |
base_model, | |
subfolder="scheduler", | |
) | |
vae = AutoencoderKL.from_pretrained( | |
"stabilityai/sd-vae-ft-ema", | |
torch_dtype=torch.float16 | |
) | |
text_encoder = CLIPTextModel.from_pretrained( | |
base_model, | |
subfolder="text_encoder", | |
torch_dtype=torch.float16, | |
) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
base_model, | |
subfolder="tokenizer", | |
torch_dtype=torch.float16, | |
) | |
unet = UNet2DConditionModel.from_pretrained( | |
base_model, | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
) | |
pipe = StableDiffusionPipeline( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
vae=vae, | |
scheduler=scheduler, | |
) | |
unet.set_attn_processor(CrossAttnProcessor) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
def get_model_list(): | |
return models + alt_models | |
unet_cache = { | |
base_name: unet | |
} | |
lora_cache = { | |
base_name: LoRANetwork(text_encoder, unet) | |
} | |
def get_model(name): | |
local_models = models + alt_models | |
keys = [k[0] for k in local_models] | |
if name not in unet_cache: | |
if name not in keys: | |
raise ValueError(name) | |
else: | |
unet = UNet2DConditionModel.from_pretrained( | |
local_models[keys.index(name)][1], | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
) | |
unet.to("cuda") | |
unet_cache[name] = unet | |
lora_cache[name] = LoRANetwork(lora_cache[base_name].text_encoder_loras, unet) | |
g_unet = unet_cache[name] | |
g_lora = lora_cache[name] | |
g_unet.set_attn_processor(CrossAttnProcessor()) | |
g_lora.reset() | |
clip_skip = local_models[keys.index(name)][2] | |
if torch.cuda.is_available(): | |
g_unet.to("cuda") | |
g_lora.to("cuda") | |
return g_unet, g_lora, clip_skip | |
# precache on huggingface | |
for model in models: | |
get_model(model[0]) | |
def error_str(error, title="Error"): | |
return ( | |
f"""#### {title} | |
{error}""" | |
if error | |
else "" | |
) | |
te_base_weight_length = text_encoder.get_input_embeddings().weight.data.shape[0] | |
original_prepare_for_tokenization = tokenizer.prepare_for_tokenization | |
def make_token_names(embs): | |
all_tokens = [] | |
for name, vec in embs.items(): | |
tokens = [f'emb-{name}-{i}' for i in range(len(vec))] | |
all_tokens.append(tokens) | |
return all_tokens | |
def setup_tokenizer(embs): | |
reg_match = [re.compile(fr"(?:^|(?<=\s|,)){k}(?=,|\s|$)") for k in embs.keys()] | |
clip_keywords = [' '.join(s) for s in make_token_names(embs)] | |
def parse_prompt(prompt: str): | |
for m, v in zip(reg_match, clip_keywords): | |
prompt = m.sub(v, prompt) | |
return prompt | |
def restore_all(): | |
global te_base_weight, tokenizer | |
tokenizer.prepare_for_tokenization = original_prepare_for_tokenization | |
embeddings = text_encoder.get_input_embeddings() | |
text_encoder.get_input_embeddings().weight.data = embeddings.weight.data[:te_base_weight_length] | |
tokenizer = CLIPTokenizer.from_pretrained( | |
base_model, | |
subfolder="tokenizer", | |
torch_dtype=torch.float16, | |
) | |
def convert_size(size_bytes): | |
if size_bytes == 0: | |
return "0B" | |
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") | |
i = int(math.floor(math.log(size_bytes, 1024))) | |
p = math.pow(1024, i) | |
s = round(size_bytes / p, 2) | |
return "%s %s" % (s, size_name[i]) | |
def inference( | |
prompt, | |
guidance, | |
steps, | |
width=512, | |
height=512, | |
seed=0, | |
neg_prompt="", | |
state=None, | |
g_strength=0.4, | |
img_input=None, | |
i2i_scale=0.5, | |
hr_enabled=False, | |
hr_method="Latent", | |
hr_scale=1.5, | |
hr_denoise=0.8, | |
sampler="DPM++ 2M Karras", | |
embs=None, | |
model=None, | |
lora_state=None, | |
lora_scale=None, | |
): | |
global pipe, unet, tokenizer, text_encoder | |
if seed is None or seed == 0: | |
seed = random.randint(0, 2147483647) | |
start_time = time.time() | |
restore_all() | |
generator = torch.Generator("cuda").manual_seed(int(seed)) | |
local_unet, local_lora, clip_skip = get_model(model) | |
pipe.set_clip_skip(clip_skip) | |
if lora_state is not None and lora_state != "": | |
local_lora.load(lora_state, lora_scale) | |
local_lora.to(local_unet.device, dtype=local_unet.dtype) | |
pipe.setup_unet(local_unet) | |
sampler_name, sampler_opt = None, None | |
for label, funcname, options in samplers_k_diffusion: | |
if label == sampler: | |
sampler_name, sampler_opt = funcname, options | |
if embs is not None and len(embs) > 0: | |
ti_embs = {} | |
for name, file in embs.items(): | |
if str(file).endswith(".pt"): | |
loaded_learned_embeds = torch.load(file, map_location="cpu") | |
else: | |
loaded_learned_embeds = load_file(file, device="cpu") | |
loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"] | |
ti_embs[name] = loaded_learned_embeds | |
if len(ti_embs) > 0: | |
tokens = setup_tokenizer(ti_embs) | |
added_tokens = tokenizer.add_tokens(tokens) | |
delta_weight = torch.cat([val for val in ti_embs.values()], dim=0) | |
assert added_tokens == delta_weight.shape[0] | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
text_encoder.get_input_embeddings().weight.data[-delta_weight.shape[0]:] = delta_weight | |
config = { | |
"negative_prompt": neg_prompt, | |
"num_inference_steps": int(steps), | |
"guidance_scale": guidance, | |
"generator": generator, | |
"sampler_name": sampler_name, | |
"sampler_opt": sampler_opt, | |
"pww_state": state, | |
"pww_attn_weight": g_strength, | |
"start_time": start_time, | |
"timeout": timeout, | |
} | |
if img_input is not None: | |
ratio = min(height / img_input.height, width / img_input.width) | |
img_input = img_input.resize( | |
(int(img_input.width * ratio), int(img_input.height * ratio)), Image.LANCZOS | |
) | |
result = pipe.img2img(prompt, image=img_input, strength=i2i_scale, **config) | |
elif hr_enabled: | |
result = pipe.txt2img( | |
prompt, | |
width=width, | |
height=height, | |
upscale=True, | |
upscale_x=hr_scale, | |
upscale_denoising_strength=hr_denoise, | |
**config, | |
**latent_upscale_modes[hr_method], | |
) | |
else: | |
result = pipe.txt2img(prompt, width=width, height=height, **config) | |
# restore | |
if embs is not None and len(embs) > 0: | |
restore_all() | |
if model in [key[0] for key in alt_models]: | |
local_unet.to("cpu") | |
end_time = time.time() | |
vram_free, vram_total = torch.cuda.mem_get_info() | |
print(f"done: model={model}, res={width}x{height}, step={steps}, time={round(end_time-start_time, 2)}s, vram_alloc={convert_size(vram_total-vram_free)}/{convert_size(vram_total)}") | |
return gr.Image.update(result[0][0], label=f"Initial Seed: {seed}") | |
color_list = [] | |
def get_color(n): | |
for _ in range(n - len(color_list)): | |
color_list.append(tuple(np.random.random(size=3) * 256)) | |
return color_list | |
def create_mixed_img(current, state, w=512, h=512): | |
w, h = int(w), int(h) | |
image_np = np.full([h, w, 4], 255) | |
if state is None: | |
state = {} | |
colors = get_color(len(state)) | |
idx = 0 | |
for key, item in state.items(): | |
if item["map"] is not None: | |
m = item["map"] < 255 | |
alpha = 150 | |
if current == key: | |
alpha = 200 | |
image_np[m] = colors[idx] + (alpha,) | |
idx += 1 | |
return image_np | |
# width.change(apply_new_res, inputs=[width, height, global_stats], outputs=[global_stats, sp, rendered]) | |
def apply_new_res(w, h, state): | |
w, h = int(w), int(h) | |
for key, item in state.items(): | |
if item["map"] is not None: | |
item["map"] = resize(item["map"], w, h) | |
update_img = gr.Image.update(value=create_mixed_img("", state, w, h)) | |
return state, update_img | |
def detect_text(text, state, width, height): | |
if text is None or text == "": | |
return None, None, None, None | |
t = text.split(",") | |
new_state = {} | |
for item in t: | |
item = item.strip() | |
if item == "": | |
continue | |
if state is not None and item in state: | |
new_state[item] = { | |
"map": state[item]["map"], | |
"weight": state[item]["weight"], | |
"mask_outsides": state[item]["mask_outsides"], | |
} | |
else: | |
new_state[item] = { | |
"map": None, | |
"weight": 0.5, | |
"mask_outsides": False | |
} | |
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None) | |
update_img = gr.update(value=create_mixed_img("", new_state, width, height)) | |
update_sketch = gr.update(value=None, interactive=False) | |
return new_state, update_sketch, update, update_img | |
def resize(img, w, h): | |
trs = transforms.Compose( | |
[ | |
transforms.ToPILImage(), | |
transforms.Resize(min(h, w)), | |
transforms.CenterCrop((h, w)), | |
] | |
) | |
result = np.array(trs(img), dtype=np.uint8) | |
return result | |
def switch_canvas(entry, state, width, height): | |
if entry == None: | |
return None, 0.5, create_mixed_img("", state, width, height) | |
return ( | |
gr.update(value=None, interactive=True), | |
gr.update(value=state[entry]["weight"] if entry in state else 0.5), | |
gr.update(value=state[entry]["mask_outsides"] if entry in state else False), | |
create_mixed_img(entry, state, width, height), | |
) | |
def apply_canvas(selected, draw, state, w, h): | |
if selected in state: | |
w, h = int(w), int(h) | |
state[selected]["map"] = resize(draw, w, h) | |
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h)) | |
def apply_weight(selected, weight, state): | |
if selected in state: | |
state[selected]["weight"] = weight | |
return state | |
def apply_option(selected, mask, state): | |
if selected in state: | |
state[selected]["mask_outsides"] = mask | |
return state | |
# sp2, radio, width, height, global_stats | |
def apply_image(image, selected, w, h, strgength, mask, state): | |
if selected in state: | |
state[selected] = { | |
"map": resize(image, w, h), | |
"weight": strgength, | |
"mask_outsides": mask | |
} | |
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h)) | |
# [ti_state, lora_state, ti_vals, lora_vals, uploads] | |
def add_net(files, ti_state, lora_state): | |
if files is None: | |
return ti_state, "", lora_state, None | |
for file in files: | |
item = Path(file.name) | |
stripedname = str(item.stem).strip() | |
if item.suffix == ".pt": | |
state_dict = torch.load(file.name, map_location="cpu") | |
else: | |
state_dict = load_file(file.name, device="cpu") | |
if any("lora" in k for k in state_dict.keys()): | |
lora_state = file.name | |
else: | |
ti_state[stripedname] = file.name | |
return ( | |
ti_state, | |
lora_state, | |
gr.Text.update(f"{[key for key in ti_state.keys()]}"), | |
gr.Text.update(f"{lora_state}"), | |
gr.Files.update(value=None), | |
) | |
# [ti_state, lora_state, ti_vals, lora_vals, uploads] | |
def clean_states(ti_state, lora_state): | |
return ( | |
dict(), | |
None, | |
gr.Text.update(f""), | |
gr.Text.update(f""), | |
gr.File.update(value=None), | |
) | |
latent_upscale_modes = { | |
"Latent": {"upscale_method": "bilinear", "upscale_antialias": False}, | |
"Latent (antialiased)": {"upscale_method": "bilinear", "upscale_antialias": True}, | |
"Latent (bicubic)": {"upscale_method": "bicubic", "upscale_antialias": False}, | |
"Latent (bicubic antialiased)": { | |
"upscale_method": "bicubic", | |
"upscale_antialias": True, | |
}, | |
"Latent (nearest)": {"upscale_method": "nearest", "upscale_antialias": False}, | |
"Latent (nearest-exact)": { | |
"upscale_method": "nearest-exact", | |
"upscale_antialias": False, | |
}, | |
} | |
css = """ | |
.finetuned-diffusion-div div{ | |
display:inline-flex; | |
align-items:center; | |
gap:.8rem; | |
font-size:1.75rem; | |
padding-top:2rem; | |
} | |
.finetuned-diffusion-div div h1{ | |
font-weight:900; | |
margin-bottom:7px | |
} | |
.finetuned-diffusion-div p{ | |
margin-bottom:10px; | |
font-size:94% | |
} | |
.box { | |
float: left; | |
height: 20px; | |
width: 20px; | |
margin-bottom: 15px; | |
border: 1px solid black; | |
clear: both; | |
} | |
a{ | |
text-decoration:underline | |
} | |
.tabs{ | |
margin-top:0; | |
margin-bottom:0 | |
} | |
#gallery{ | |
min-height:20rem | |
} | |
.no-border { | |
border: none !important; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Demo for diffusion models</h1> | |
</div> | |
<p>Hso @ nyanko.sketch2img.gradio</p> | |
</div> | |
""" | |
) | |
global_stats = gr.State(value={}) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
model = gr.Dropdown( | |
choices=[k[0] for k in get_model_list()], | |
label="Model", | |
value=base_name, | |
) | |
image_out = gr.Image(height=512) | |
# gallery = gr.Gallery( | |
# label="Generated images", show_label=False, elem_id="gallery" | |
# ).style(grid=[1], height="auto") | |
with gr.Column(scale=45): | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=70): | |
prompt = gr.Textbox( | |
label="Prompt", | |
value="loli cat girl, blue eyes, flat chest, solo, long messy silver hair, blue capelet, cat ears, cat tail, upper body", | |
show_label=True, | |
max_lines=4, | |
placeholder="Enter prompt.", | |
) | |
neg_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="bad quality, low quality, jpeg artifact, cropped", | |
show_label=True, | |
max_lines=4, | |
placeholder="Enter negative prompt.", | |
) | |
generate = gr.Button(value="Generate").style( | |
rounded=(False, True, True, False) | |
) | |
with gr.Tab("Options"): | |
with gr.Group(): | |
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1) | |
with gr.Row(): | |
guidance = gr.Slider( | |
label="Guidance scale", value=7.5, maximum=15 | |
) | |
steps = gr.Slider( | |
label="Steps", value=25, minimum=2, maximum=50, step=1 | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", value=512, minimum=64, maximum=1024, step=64 | |
) | |
height = gr.Slider( | |
label="Height", value=512, minimum=64, maximum=1024, step=64 | |
) | |
sampler = gr.Dropdown( | |
value="DPM++ 2M Karras", | |
label="Sampler", | |
choices=[s[0] for s in samplers_k_diffusion], | |
) | |
seed = gr.Number(label="Seed (0 = random)", value=0) | |
with gr.Tab("Image to image"): | |
with gr.Group(): | |
inf_image = gr.Image( | |
label="Image", height=256, tool="editor", type="pil" | |
) | |
inf_strength = gr.Slider( | |
label="Transformation strength", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.5, | |
) | |
def res_cap(g, w, h, x): | |
if g: | |
return f"Enable upscaler: {w}x{h} to {int(w*x)}x{int(h*x)}" | |
else: | |
return "Enable upscaler" | |
with gr.Tab("Hires fix"): | |
with gr.Group(): | |
hr_enabled = gr.Checkbox(label="Enable upscaler", value=False) | |
hr_method = gr.Dropdown( | |
[key for key in latent_upscale_modes.keys()], | |
value="Latent", | |
label="Upscale method", | |
) | |
hr_scale = gr.Slider( | |
label="Upscale factor", | |
minimum=1.0, | |
maximum=3, | |
step=0.1, | |
value=1.5, | |
) | |
hr_denoise = gr.Slider( | |
label="Denoising strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.8, | |
) | |
hr_scale.change( | |
lambda g, x, w, h: gr.Checkbox.update( | |
label=res_cap(g, w, h, x) | |
), | |
inputs=[hr_enabled, hr_scale, width, height], | |
outputs=hr_enabled, | |
) | |
hr_enabled.change( | |
lambda g, x, w, h: gr.Checkbox.update( | |
label=res_cap(g, w, h, x) | |
), | |
inputs=[hr_enabled, hr_scale, width, height], | |
outputs=hr_enabled, | |
) | |
with gr.Tab("Embeddings/Loras"): | |
ti_state = gr.State(dict()) | |
lora_state = gr.State() | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=90): | |
ti_vals = gr.Text(label="Loaded embeddings") | |
with gr.Row(): | |
with gr.Column(scale=90): | |
lora_vals = gr.Text(label="Loaded loras") | |
with gr.Row(): | |
uploads = gr.Files(label="Upload new embeddings/lora") | |
with gr.Column(): | |
lora_scale = gr.Slider( | |
label="Lora scale", | |
minimum=0, | |
maximum=2, | |
step=0.01, | |
value=1.0, | |
) | |
btn = gr.Button(value="Upload") | |
btn_del = gr.Button(value="Reset") | |
btn.click( | |
add_net, | |
inputs=[uploads, ti_state, lora_state], | |
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads], | |
) | |
btn_del.click( | |
clean_states, | |
inputs=[ti_state, lora_state], | |
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads], | |
) | |
# error_output = gr.Markdown() | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Paint with words</h1> | |
</div> | |
<p> | |
Will use the following formula: w = scale * token_weight_martix * log(1 + sigma) * max(qk). | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
rendered = gr.Image( | |
invert_colors=True, | |
source="canvas", | |
interactive=False, | |
image_mode="RGBA", | |
) | |
with gr.Column(scale=45): | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=70): | |
g_strength = gr.Slider( | |
label="Weight scaling", | |
minimum=0, | |
maximum=0.8, | |
step=0.01, | |
value=0.4, | |
) | |
text = gr.Textbox( | |
lines=2, | |
interactive=True, | |
label="Token to Draw: (Separate by comma)", | |
) | |
radio = gr.Radio([], label="Tokens") | |
sk_update = gr.Button(value="Update").style( | |
rounded=(False, True, True, False) | |
) | |
# g_strength.change(lambda b: gr.update(f"Scaled additional attn: $w = {b} \log (1 + \sigma) \std (Q^T K)$."), inputs=g_strength, outputs=[g_output]) | |
with gr.Tab("SketchPad"): | |
sp = gr.Image( | |
image_mode="L", | |
tool="sketch", | |
source="canvas", | |
interactive=False, | |
) | |
mask_outsides = gr.Checkbox( | |
label="Mask other areas", | |
value=False | |
) | |
strength = gr.Slider( | |
label="Token strength", | |
minimum=0, | |
maximum=0.8, | |
step=0.01, | |
value=0.5, | |
) | |
sk_update.click( | |
detect_text, | |
inputs=[text, global_stats, width, height], | |
outputs=[global_stats, sp, radio, rendered], | |
) | |
radio.change( | |
switch_canvas, | |
inputs=[radio, global_stats, width, height], | |
outputs=[sp, strength, mask_outsides, rendered], | |
) | |
sp.edit( | |
apply_canvas, | |
inputs=[radio, sp, global_stats, width, height], | |
outputs=[global_stats, rendered], | |
) | |
strength.change( | |
apply_weight, | |
inputs=[radio, strength, global_stats], | |
outputs=[global_stats], | |
) | |
mask_outsides.change( | |
apply_option, | |
inputs=[radio, mask_outsides, global_stats], | |
outputs=[global_stats], | |
) | |
with gr.Tab("UploadFile"): | |
sp2 = gr.Image( | |
image_mode="L", | |
source="upload", | |
shape=(512, 512), | |
) | |
mask_outsides2 = gr.Checkbox( | |
label="Mask other areas", | |
value=False | |
) | |
strength2 = gr.Slider( | |
label="Token strength", | |
minimum=0, | |
maximum=0.8, | |
step=0.01, | |
value=0.5, | |
) | |
apply_style = gr.Button(value="Apply") | |
apply_style.click( | |
apply_image, | |
inputs=[sp2, radio, width, height, strength2, mask_outsides2, global_stats], | |
outputs=[global_stats, rendered], | |
) | |
width.change( | |
apply_new_res, | |
inputs=[width, height, global_stats], | |
outputs=[global_stats, rendered], | |
) | |
height.change( | |
apply_new_res, | |
inputs=[width, height, global_stats], | |
outputs=[global_stats, rendered], | |
) | |
# color_stats = gr.State(value={}) | |
# text.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered]) | |
# sp.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered]) | |
inputs = [ | |
prompt, | |
guidance, | |
steps, | |
width, | |
height, | |
seed, | |
neg_prompt, | |
global_stats, | |
g_strength, | |
inf_image, | |
inf_strength, | |
hr_enabled, | |
hr_method, | |
hr_scale, | |
hr_denoise, | |
sampler, | |
ti_state, | |
model, | |
lora_state, | |
lora_scale, | |
] | |
outputs = [image_out] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
print(f"Space built in {time.time() - start_time:.2f} seconds") | |
# demo.launch(share=True) | |
demo.launch(enable_queue=True, server_name="0.0.0.0", server_port=7860) | |