Spaces:
Running
on
T4
Running
on
T4
import importlib | |
import inspect | |
import math | |
from pathlib import Path | |
import re | |
from collections import defaultdict | |
from typing import List, Optional, Union | |
import time | |
import k_diffusion | |
import numpy as np | |
import PIL | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser | |
from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords | |
from torch import einsum | |
from torch.autograd.function import Function | |
from diffusers import DiffusionPipeline | |
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available | |
from diffusers.utils import logging, randn_tensor | |
import modules.safe as _ | |
from safetensors.torch import load_file | |
xformers_available = False | |
try: | |
import xformers | |
xformers_available = True | |
except ImportError: | |
pass | |
EPSILON = 1e-6 | |
exists = lambda val: val is not None | |
default = lambda val, d: val if exists(val) else d | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def get_attention_scores(attn, query, key, attention_mask=None): | |
if attn.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty( | |
query.shape[0], | |
query.shape[1], | |
key.shape[1], | |
dtype=query.dtype, | |
device=query.device, | |
), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=attn.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if attn.upcast_softmax: | |
attention_scores = attention_scores.float() | |
return attention_scores | |
class CrossAttnProcessor(nn.Module): | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) | |
encoder_states = hidden_states | |
is_xattn = False | |
if encoder_hidden_states is not None: | |
is_xattn = True | |
img_state = encoder_hidden_states["img_state"] | |
encoder_states = encoder_hidden_states["states"] | |
weight_func = encoder_hidden_states["weight_func"] | |
sigma = encoder_hidden_states["sigma"] | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(encoder_states) | |
value = attn.to_v(encoder_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
if is_xattn and isinstance(img_state, dict): | |
# use torch.baddbmm method (slow) | |
attention_scores = get_attention_scores(attn, query, key, attention_mask) | |
w = img_state[sequence_length].to(query.device) | |
cross_attention_weight = weight_func(w, sigma, attention_scores) | |
attention_scores += torch.repeat_interleave( | |
cross_attention_weight, repeats=attn.heads, dim=0 | |
) | |
# calc probs | |
attention_probs = attention_scores.softmax(dim=-1) | |
attention_probs = attention_probs.to(query.dtype) | |
hidden_states = torch.bmm(attention_probs, value) | |
elif xformers_available: | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query.contiguous(), | |
key.contiguous(), | |
value.contiguous(), | |
attn_bias=attention_mask, | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
q_bucket_size = 512 | |
k_bucket_size = 1024 | |
# use flash-attention | |
hidden_states = FlashAttentionFunction.apply( | |
query.contiguous(), | |
key.contiguous(), | |
value.contiguous(), | |
attention_mask, | |
False, | |
q_bucket_size, | |
k_bucket_size, | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class ModelWrapper: | |
def __init__(self, model, alphas_cumprod): | |
self.model = model | |
self.alphas_cumprod = alphas_cumprod | |
def apply_model(self, *args, **kwargs): | |
if len(args) == 3: | |
encoder_hidden_states = args[-1] | |
args = args[:2] | |
if kwargs.get("cond", None) is not None: | |
encoder_hidden_states = kwargs.pop("cond") | |
return self.model( | |
*args, encoder_hidden_states=encoder_hidden_states, **kwargs | |
).sample | |
class StableDiffusionPipeline(DiffusionPipeline): | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae, | |
text_encoder, | |
tokenizer, | |
unet, | |
scheduler, | |
): | |
super().__init__() | |
# get correct sigmas from LMS | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.setup_unet(self.unet) | |
self.setup_text_encoder() | |
def setup_text_encoder(self, n=1, new_encoder=None): | |
if new_encoder is not None: | |
self.text_encoder = new_encoder | |
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder) | |
self.prompt_parser.CLIP_stop_at_last_layers = n | |
def setup_unet(self, unet): | |
unet = unet.to(self.device) | |
model = ModelWrapper(unet, self.scheduler.alphas_cumprod) | |
if self.scheduler.prediction_type == "v_prediction": | |
self.k_diffusion_model = CompVisVDenoiser(model) | |
else: | |
self.k_diffusion_model = CompVisDenoiser(model) | |
def get_scheduler(self, scheduler_type: str): | |
library = importlib.import_module("k_diffusion") | |
sampling = getattr(library, "sampling") | |
return getattr(sampling, scheduler_type) | |
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None): | |
uncond, cond = text_ids[0], text_ids[1] | |
img_state = [] | |
if state is None: | |
return torch.FloatTensor(0) | |
for k, v in state.items(): | |
if v["map"] is None: | |
continue | |
v_input = self.tokenizer( | |
k, | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
add_special_tokens=False, | |
).input_ids | |
dotmap = v["map"] < 255 | |
out = dotmap.astype(float) | |
if v["mask_outsides"]: | |
out[out==0] = -1 | |
arr = torch.from_numpy( | |
out * float(v["weight"]) * g_strength | |
) | |
img_state.append((v_input, arr)) | |
if len(img_state) == 0: | |
return torch.FloatTensor(0) | |
w_tensors = dict() | |
cond = cond.tolist() | |
uncond = uncond.tolist() | |
for layer in self.unet.down_blocks: | |
c = int(len(cond)) | |
w, h = img_state[0][1].shape | |
w_r, h_r = w // scale_ratio, h // scale_ratio | |
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32) | |
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32) | |
for v_as_tokens, img_where_color in img_state: | |
is_in = 0 | |
ret = ( | |
F.interpolate( | |
img_where_color.unsqueeze(0).unsqueeze(1), | |
scale_factor=1 / scale_ratio, | |
mode="bilinear", | |
align_corners=True, | |
) | |
.squeeze() | |
.reshape(-1, 1) | |
.repeat(1, len(v_as_tokens)) | |
) | |
for idx, tok in enumerate(cond): | |
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens: | |
is_in = 1 | |
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret | |
for idx, tok in enumerate(uncond): | |
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens: | |
is_in = 1 | |
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret | |
if not is_in == 1: | |
print(f"tokens {v_as_tokens} not found in text") | |
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor]) | |
scale_ratio *= 2 | |
return w_tensors | |
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | |
`attention_head_dim` must be a multiple of `slice_size`. | |
""" | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = self.unet.config.attention_head_dim // 2 | |
self.unet.set_attention_slice(slice_size) | |
def disable_attention_slicing(self): | |
r""" | |
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | |
back to computing attention in one step. | |
""" | |
# set slice_size = `None` to disable `attention slicing` | |
self.enable_attention_slicing(None) | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [ | |
self.unet, | |
self.text_encoder, | |
self.vae, | |
self.safety_checker, | |
]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def decode_latents(self, latents): | |
latents = latents.to(self.device, dtype=self.vae.dtype) | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None | |
and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
shape = (batch_size, num_channels_latents, height // 8, width // 8) | |
if latents is None: | |
if device.type == "mps": | |
# randn does not work reproducibly on mps | |
latents = torch.randn( | |
shape, generator=generator, device="cpu", dtype=dtype | |
).to(device) | |
else: | |
latents = torch.randn( | |
shape, generator=generator, device=device, dtype=dtype | |
) | |
else: | |
# if latents.shape != shape: | |
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
return latents | |
def preprocess(self, image): | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
w, h = image[0].size | |
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8 | |
image = [ | |
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[ | |
None, : | |
] | |
for i in image | |
] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
def img2img( | |
self, | |
prompt: Union[str, List[str]], | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
generator: Optional[torch.Generator] = None, | |
image: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
latents=None, | |
strength=1.0, | |
pww_state=None, | |
pww_attn_weight=1.0, | |
sampler_name="", | |
sampler_opt={}, | |
start_time=-1, | |
timeout=180, | |
scale_ratio=8.0, | |
): | |
sampler = self.get_scheduler(sampler_name) | |
if image is not None: | |
image = self.preprocess(image) | |
image = image.to(self.vae.device, dtype=self.vae.dtype) | |
init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
latents = 0.18215 * init_latents | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
latents = latents.to(device, dtype=self.unet.dtype) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = True | |
if guidance_scale <= 1.0: | |
raise ValueError("has to use guidance_scale") | |
# 3. Encode input prompt | |
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt]) | |
text_embeddings = text_embeddings.to(self.unet.dtype) | |
init_timestep = ( | |
int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0 | |
) | |
sigmas = self.get_sigmas(init_timestep, sampler_opt).to( | |
text_embeddings.device, dtype=text_embeddings.dtype | |
) | |
t_start = max(init_timestep - num_inference_steps, 0) | |
sigma_sched = sigmas[t_start:] | |
noise = randn_tensor( | |
latents.shape, | |
generator=generator, | |
device=device, | |
dtype=text_embeddings.dtype, | |
) | |
latents = latents.to(device) | |
latents = latents + noise * sigma_sched[0] | |
# 5. Prepare latent variables | |
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) | |
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to( | |
latents.device | |
) | |
img_state = self.encode_sketchs( | |
pww_state, | |
g_strength=pww_attn_weight, | |
text_ids=text_ids, | |
) | |
def model_fn(x, sigma): | |
if start_time > 0 and timeout > 0: | |
assert (time.time() - start_time) < timeout, "inference process timed out" | |
latent_model_input = torch.cat([x] * 2) | |
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max() | |
encoder_state = { | |
"img_state": img_state, | |
"states": text_embeddings, | |
"sigma": sigma[0], | |
"weight_func": weight_func, | |
} | |
noise_pred = self.k_diffusion_model( | |
latent_model_input, sigma, cond=encoder_state | |
) | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
return noise_pred | |
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched, sampler) | |
latents = sampler(model_fn, latents, **sampler_args) | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# 10. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
return (image,) | |
def get_sigmas(self, steps, params): | |
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False) | |
steps += 1 if discard_next_to_last_sigma else 0 | |
if params.get("scheduler", None) == "karras": | |
sigma_min, sigma_max = ( | |
self.k_diffusion_model.sigmas[0].item(), | |
self.k_diffusion_model.sigmas[-1].item(), | |
) | |
sigmas = k_diffusion.sampling.get_sigmas_karras( | |
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device | |
) | |
else: | |
sigmas = self.k_diffusion_model.get_sigmas(steps) | |
if discard_next_to_last_sigma: | |
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) | |
return sigmas | |
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454 | |
def get_sampler_extra_args_t2i(self, sigmas, eta, steps, func): | |
extra_params_kwargs = {} | |
if "eta" in inspect.signature(func).parameters: | |
extra_params_kwargs["eta"] = eta | |
if "sigma_min" in inspect.signature(func).parameters: | |
extra_params_kwargs["sigma_min"] = sigmas[0].item() | |
extra_params_kwargs["sigma_max"] = sigmas[-1].item() | |
if "n" in inspect.signature(func).parameters: | |
extra_params_kwargs["n"] = steps | |
else: | |
extra_params_kwargs["sigmas"] = sigmas | |
return extra_params_kwargs | |
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454 | |
def get_sampler_extra_args_i2i(self, sigmas, func): | |
extra_params_kwargs = {} | |
if "sigma_min" in inspect.signature(func).parameters: | |
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last | |
extra_params_kwargs["sigma_min"] = sigmas[-2] | |
if "sigma_max" in inspect.signature(func).parameters: | |
extra_params_kwargs["sigma_max"] = sigmas[0] | |
if "n" in inspect.signature(func).parameters: | |
extra_params_kwargs["n"] = len(sigmas) - 1 | |
if "sigma_sched" in inspect.signature(func).parameters: | |
extra_params_kwargs["sigma_sched"] = sigmas | |
if "sigmas" in inspect.signature(func).parameters: | |
extra_params_kwargs["sigmas"] = sigmas | |
return extra_params_kwargs | |
def txt2img( | |
self, | |
prompt: Union[str, List[str]], | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
callback_steps: Optional[int] = 1, | |
upscale=False, | |
upscale_x: float = 2.0, | |
upscale_method: str = "bicubic", | |
upscale_antialias: bool = False, | |
upscale_denoising_strength: int = 0.7, | |
pww_state=None, | |
pww_attn_weight=1.0, | |
sampler_name="", | |
sampler_opt={}, | |
start_time=-1, | |
timeout=180, | |
): | |
sampler = self.get_scheduler(sampler_name) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = True | |
if guidance_scale <= 1.0: | |
raise ValueError("has to use guidance_scale") | |
# 3. Encode input prompt | |
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt]) | |
text_embeddings = text_embeddings.to(self.unet.dtype) | |
# 4. Prepare timesteps | |
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to( | |
text_embeddings.device, dtype=text_embeddings.dtype | |
) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
latents = latents * sigmas[0] | |
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device) | |
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to( | |
latents.device | |
) | |
img_state = self.encode_sketchs( | |
pww_state, | |
g_strength=pww_attn_weight, | |
text_ids=text_ids, | |
) | |
def model_fn(x, sigma): | |
if start_time > 0 and timeout > 0: | |
assert (time.time() - start_time) < timeout, "inference process timed out" | |
latent_model_input = torch.cat([x] * 2) | |
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max() | |
encoder_state = { | |
"img_state": img_state, | |
"states": text_embeddings, | |
"sigma": sigma[0], | |
"weight_func": weight_func, | |
} | |
noise_pred = self.k_diffusion_model( | |
latent_model_input, sigma, cond=encoder_state | |
) | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
return noise_pred | |
extra_args = self.get_sampler_extra_args_t2i( | |
sigmas, eta, num_inference_steps, sampler | |
) | |
latents = sampler(model_fn, latents, **extra_args) | |
if upscale: | |
target_height = height * upscale_x | |
target_width = width * upscale_x | |
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
latents = torch.nn.functional.interpolate( | |
latents, | |
size=( | |
int(target_height // vae_scale_factor), | |
int(target_width // vae_scale_factor), | |
), | |
mode=upscale_method, | |
antialias=upscale_antialias, | |
) | |
return self.img2img( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
generator=generator, | |
latents=latents, | |
strength=upscale_denoising_strength, | |
sampler_name=sampler_name, | |
sampler_opt=sampler_opt, | |
pww_state=None, | |
pww_attn_weight=pww_attn_weight / 2, | |
) | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# 10. Convert to PIL | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
return (image,) | |
class FlashAttentionFunction(Function): | |
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): | |
"""Algorithm 2 in the paper""" | |
device = q.device | |
max_neg_value = -torch.finfo(q.dtype).max | |
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
o = torch.zeros_like(q) | |
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device) | |
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device) | |
scale = q.shape[-1] ** -0.5 | |
if not exists(mask): | |
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) | |
else: | |
mask = rearrange(mask, "b n -> b 1 1 n") | |
mask = mask.split(q_bucket_size, dim=-1) | |
row_splits = zip( | |
q.split(q_bucket_size, dim=-2), | |
o.split(q_bucket_size, dim=-2), | |
mask, | |
all_row_sums.split(q_bucket_size, dim=-2), | |
all_row_maxes.split(q_bucket_size, dim=-2), | |
) | |
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): | |
q_start_index = ind * q_bucket_size - qk_len_diff | |
col_splits = zip( | |
k.split(k_bucket_size, dim=-2), | |
v.split(k_bucket_size, dim=-2), | |
) | |
for k_ind, (kc, vc) in enumerate(col_splits): | |
k_start_index = k_ind * k_bucket_size | |
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
if exists(row_mask): | |
attn_weights.masked_fill_(~row_mask, max_neg_value) | |
if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
causal_mask = torch.ones( | |
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device | |
).triu(q_start_index - k_start_index + 1) | |
attn_weights.masked_fill_(causal_mask, max_neg_value) | |
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) | |
attn_weights -= block_row_maxes | |
exp_weights = torch.exp(attn_weights) | |
if exists(row_mask): | |
exp_weights.masked_fill_(~row_mask, 0.0) | |
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp( | |
min=EPSILON | |
) | |
new_row_maxes = torch.maximum(block_row_maxes, row_maxes) | |
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc) | |
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) | |
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) | |
new_row_sums = ( | |
exp_row_max_diff * row_sums | |
+ exp_block_row_max_diff * block_row_sums | |
) | |
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_( | |
(exp_block_row_max_diff / new_row_sums) * exp_values | |
) | |
row_maxes.copy_(new_row_maxes) | |
row_sums.copy_(new_row_sums) | |
lse = all_row_sums.log() + all_row_maxes | |
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) | |
ctx.save_for_backward(q, k, v, o, lse) | |
return o | |
def backward(ctx, do): | |
"""Algorithm 4 in the paper""" | |
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args | |
q, k, v, o, lse = ctx.saved_tensors | |
device = q.device | |
max_neg_value = -torch.finfo(q.dtype).max | |
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
dq = torch.zeros_like(q) | |
dk = torch.zeros_like(k) | |
dv = torch.zeros_like(v) | |
row_splits = zip( | |
q.split(q_bucket_size, dim=-2), | |
o.split(q_bucket_size, dim=-2), | |
do.split(q_bucket_size, dim=-2), | |
mask, | |
lse.split(q_bucket_size, dim=-2), | |
dq.split(q_bucket_size, dim=-2), | |
) | |
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits): | |
q_start_index = ind * q_bucket_size - qk_len_diff | |
col_splits = zip( | |
k.split(k_bucket_size, dim=-2), | |
v.split(k_bucket_size, dim=-2), | |
dk.split(k_bucket_size, dim=-2), | |
dv.split(k_bucket_size, dim=-2), | |
) | |
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): | |
k_start_index = k_ind * k_bucket_size | |
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
causal_mask = torch.ones( | |
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device | |
).triu(q_start_index - k_start_index + 1) | |
attn_weights.masked_fill_(causal_mask, max_neg_value) | |
p = torch.exp(attn_weights - lsec) | |
if exists(row_mask): | |
p.masked_fill_(~row_mask, 0.0) | |
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc) | |
dp = einsum("... i d, ... j d -> ... i j", doc, vc) | |
D = (doc * oc).sum(dim=-1, keepdims=True) | |
ds = p * scale * (dp - D) | |
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc) | |
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc) | |
dqc.add_(dq_chunk) | |
dkc.add_(dk_chunk) | |
dvc.add_(dv_chunk) | |
return dq, dk, dv, None, None, None, None | |