Spaces:
Starting
on
T4
Starting
on
T4
Update modules/model.py
Browse files- modules/model.py +238 -176
modules/model.py
CHANGED
@@ -26,8 +26,9 @@ import modules.safe as _
|
|
26 |
from safetensors.torch import load_file
|
27 |
|
28 |
xformers_available = False
|
29 |
-
try:
|
30 |
import xformers
|
|
|
31 |
xformers_available = True
|
32 |
except ImportError:
|
33 |
pass
|
@@ -37,6 +38,7 @@ exists = lambda val: val is not None
|
|
37 |
default = lambda val, d: val if exists(val) else d
|
38 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
|
|
|
40 |
def get_attention_scores(attn, query, key, attention_mask=None):
|
41 |
|
42 |
if attn.upcast_attention:
|
@@ -65,72 +67,89 @@ def get_attention_scores(attn, query, key, attention_mask=None):
|
|
65 |
|
66 |
return attention_scores
|
67 |
|
68 |
-
|
69 |
def load_lora_attn_procs(model_file, unet, scale=1.0):
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
for key, value_dict in lora_grouped_dict.items():
|
113 |
-
rank = value_dict["to_k_lora.down.weight"].shape[0]
|
114 |
-
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
|
115 |
-
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
|
116 |
-
|
117 |
-
attn_processors[key] = LoRACrossAttnProcessor(
|
118 |
-
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank, scale=scale
|
119 |
)
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
|
132 |
-
class CrossAttnProcessor(nn.Module):
|
133 |
-
def __call__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
batch_size, sequence_length, _ = hidden_states.shape
|
135 |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
136 |
|
@@ -146,12 +165,12 @@ class CrossAttnProcessor(nn.Module):
|
|
146 |
query = attn.to_q(hidden_states)
|
147 |
key = attn.to_k(encoder_states)
|
148 |
value = attn.to_v(encoder_states)
|
149 |
-
|
150 |
if qkvo_bias is not None:
|
151 |
query += qkvo_bias["q"](hidden_states)
|
152 |
key += qkvo_bias["k"](encoder_states)
|
153 |
value += qkvo_bias["v"](encoder_states)
|
154 |
-
|
155 |
query = attn.head_to_batch_dim(query)
|
156 |
key = attn.head_to_batch_dim(key)
|
157 |
value = attn.head_to_batch_dim(value)
|
@@ -161,56 +180,74 @@ class CrossAttnProcessor(nn.Module):
|
|
161 |
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
162 |
w = img_state[sequence_length].to(query.device)
|
163 |
cross_attention_weight = weight_func(w, sigma, attention_scores)
|
164 |
-
attention_scores += torch.repeat_interleave(
|
165 |
-
|
|
|
|
|
166 |
# calc probs
|
167 |
attention_probs = attention_scores.softmax(dim=-1)
|
168 |
attention_probs = attention_probs.to(query.dtype)
|
169 |
hidden_states = torch.bmm(attention_probs, value)
|
170 |
-
|
171 |
elif xformers_available:
|
172 |
hidden_states = xformers.ops.memory_efficient_attention(
|
173 |
-
query.contiguous(),
|
|
|
|
|
|
|
174 |
)
|
175 |
hidden_states = hidden_states.to(query.dtype)
|
176 |
-
|
177 |
else:
|
178 |
q_bucket_size = 512
|
179 |
k_bucket_size = 1024
|
180 |
-
|
181 |
# use flash-attention
|
182 |
-
hidden_states =
|
183 |
-
query.contiguous(),
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
185 |
)
|
186 |
hidden_states = hidden_states.to(query.dtype)
|
187 |
-
|
188 |
hidden_states = attn.batch_to_head_dim(hidden_states)
|
189 |
|
190 |
# linear proj
|
191 |
hidden_states = attn.to_out[0](hidden_states)
|
192 |
-
|
193 |
if qkvo_bias is not None:
|
194 |
hidden_states += qkvo_bias["o"](hidden_states)
|
195 |
-
|
196 |
# dropout
|
197 |
hidden_states = attn.to_out[1](hidden_states)
|
198 |
|
199 |
return hidden_states
|
200 |
-
|
201 |
|
202 |
class LoRACrossAttnProcessor(CrossAttnProcessor):
|
203 |
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, scale=1.0):
|
204 |
super().__init__()
|
205 |
|
206 |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
207 |
-
self.to_k_lora = LoRALinearLayer(
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
210 |
self.scale = scale
|
211 |
-
|
212 |
def __call__(
|
213 |
-
self,
|
|
|
|
|
|
|
|
|
214 |
):
|
215 |
scale = self.scale
|
216 |
qkvo_bias = {
|
@@ -219,33 +256,37 @@ class LoRACrossAttnProcessor(CrossAttnProcessor):
|
|
219 |
"v": lambda inputs: scale * self.to_v_lora(inputs),
|
220 |
"o": lambda inputs: scale * self.to_out_lora(inputs),
|
221 |
}
|
222 |
-
return super().__call__(
|
|
|
|
|
223 |
|
224 |
|
225 |
class LoRALinearLayer(nn.Module):
|
226 |
-
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
|
237 |
-
|
238 |
-
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
|
245 |
-
|
246 |
-
|
247 |
|
248 |
-
|
249 |
|
250 |
|
251 |
class ModelWrapper:
|
@@ -287,8 +328,13 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
287 |
scheduler=scheduler,
|
288 |
)
|
289 |
self.setup_unet(self.unet)
|
290 |
-
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
292 |
def setup_unet(self, unet):
|
293 |
unet = unet.to(self.device)
|
294 |
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
@@ -301,14 +347,14 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
301 |
library = importlib.import_module("k_diffusion")
|
302 |
sampling = getattr(library, "sampling")
|
303 |
return getattr(sampling, scheduler_type)
|
304 |
-
|
305 |
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
|
306 |
uncond, cond = text_ids[0], text_ids[1]
|
307 |
-
|
308 |
img_state = []
|
309 |
if state is None:
|
310 |
return torch.FloatTensor(0)
|
311 |
-
|
312 |
for k, v in state.items():
|
313 |
if v["map"] is None:
|
314 |
continue
|
@@ -319,14 +365,16 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
319 |
truncation=True,
|
320 |
add_special_tokens=False,
|
321 |
).input_ids
|
322 |
-
|
323 |
dotmap = v["map"] < 255
|
324 |
-
arr = torch.from_numpy(
|
|
|
|
|
325 |
img_state.append((v_input, arr))
|
326 |
-
|
327 |
if len(img_state) == 0:
|
328 |
return torch.FloatTensor(0)
|
329 |
-
|
330 |
w_tensors = dict()
|
331 |
cond = cond.tolist()
|
332 |
uncond = uncond.tolist()
|
@@ -341,26 +389,31 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
341 |
for v_as_tokens, img_where_color in img_state:
|
342 |
is_in = 0
|
343 |
|
344 |
-
ret =
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
351 |
for idx, tok in enumerate(cond):
|
352 |
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
353 |
is_in = 1
|
354 |
-
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] +=
|
355 |
-
|
356 |
for idx, tok in enumerate(uncond):
|
357 |
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
358 |
-
is_in = 1
|
359 |
-
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] +=
|
360 |
|
361 |
if not is_in == 1:
|
362 |
print(f"tokens {v_as_tokens} not found in text")
|
363 |
-
|
364 |
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
365 |
scale_ratio *= 2
|
366 |
|
@@ -432,7 +485,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
432 |
):
|
433 |
return torch.device(module._hf_hook.execution_device)
|
434 |
return self.device
|
435 |
-
|
436 |
def decode_latents(self, latents):
|
437 |
latents = latents.to(self.device, dtype=self.vae.dtype)
|
438 |
latents = 1 / 0.18215 * latents
|
@@ -533,7 +586,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
533 |
pww_attn_weight=1.0,
|
534 |
sampler_name="",
|
535 |
sampler_opt={},
|
536 |
-
scale_ratio=8.0
|
537 |
):
|
538 |
sampler = self.get_scheduler(sampler_name)
|
539 |
if image is not None:
|
@@ -556,8 +609,10 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
556 |
# 3. Encode input prompt
|
557 |
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
558 |
text_embeddings = text_embeddings.to(self.unet.dtype)
|
559 |
-
|
560 |
-
init_timestep =
|
|
|
|
|
561 |
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
|
562 |
text_embeddings.device, dtype=text_embeddings.dtype
|
563 |
)
|
@@ -581,17 +636,15 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
581 |
)
|
582 |
|
583 |
img_state = self.encode_sketchs(
|
584 |
-
pww_state,
|
585 |
g_strength=pww_attn_weight,
|
586 |
text_ids=text_ids,
|
587 |
)
|
588 |
-
|
589 |
def model_fn(x, sigma):
|
590 |
-
|
591 |
latent_model_input = torch.cat([x] * 2)
|
592 |
-
weight_func = (
|
593 |
-
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
594 |
-
)
|
595 |
encoder_state = {
|
596 |
"img_state": img_state,
|
597 |
"states": text_embeddings,
|
@@ -744,19 +797,17 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
744 |
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
745 |
latents.device
|
746 |
)
|
747 |
-
|
748 |
img_state = self.encode_sketchs(
|
749 |
-
pww_state,
|
750 |
g_strength=pww_attn_weight,
|
751 |
text_ids=text_ids,
|
752 |
)
|
753 |
|
754 |
def model_fn(x, sigma):
|
755 |
-
|
756 |
latent_model_input = torch.cat([x] * 2)
|
757 |
-
weight_func = (
|
758 |
-
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
759 |
-
)
|
760 |
encoder_state = {
|
761 |
"img_state": img_state,
|
762 |
"states": text_embeddings,
|
@@ -802,7 +853,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
802 |
sampler_name=sampler_name,
|
803 |
sampler_opt=sampler_opt,
|
804 |
pww_state=None,
|
805 |
-
pww_attn_weight=pww_attn_weight/2,
|
806 |
)
|
807 |
|
808 |
# 8. Post-processing
|
@@ -816,76 +867,83 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
816 |
|
817 |
|
818 |
class FlashAttentionFunction(Function):
|
819 |
-
|
820 |
-
|
821 |
@staticmethod
|
822 |
@torch.no_grad()
|
823 |
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
824 |
-
"""
|
825 |
|
826 |
device = q.device
|
827 |
max_neg_value = -torch.finfo(q.dtype).max
|
828 |
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
829 |
|
830 |
o = torch.zeros_like(q)
|
831 |
-
all_row_sums = torch.zeros((*q.shape[:-1], 1), device
|
832 |
-
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device
|
833 |
|
834 |
-
scale =
|
835 |
|
836 |
if not exists(mask):
|
837 |
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
838 |
else:
|
839 |
-
mask = rearrange(mask,
|
840 |
-
mask = mask.split(q_bucket_size, dim
|
841 |
|
842 |
row_splits = zip(
|
843 |
-
q.split(q_bucket_size, dim
|
844 |
-
o.split(q_bucket_size, dim
|
845 |
mask,
|
846 |
-
all_row_sums.split(q_bucket_size, dim
|
847 |
-
all_row_maxes.split(q_bucket_size, dim
|
848 |
)
|
849 |
|
850 |
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
851 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
852 |
|
853 |
col_splits = zip(
|
854 |
-
k.split(k_bucket_size, dim
|
855 |
-
v.split(k_bucket_size, dim
|
856 |
)
|
857 |
|
858 |
for k_ind, (kc, vc) in enumerate(col_splits):
|
859 |
k_start_index = k_ind * k_bucket_size
|
860 |
|
861 |
-
attn_weights = einsum(
|
862 |
|
863 |
if exists(row_mask):
|
864 |
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
865 |
|
866 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
867 |
-
causal_mask = torch.ones(
|
|
|
|
|
868 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
869 |
|
870 |
-
block_row_maxes = attn_weights.amax(dim
|
871 |
attn_weights -= block_row_maxes
|
872 |
exp_weights = torch.exp(attn_weights)
|
873 |
|
874 |
if exists(row_mask):
|
875 |
-
exp_weights.masked_fill_(~row_mask, 0.)
|
876 |
|
877 |
-
block_row_sums = exp_weights.sum(dim
|
|
|
|
|
878 |
|
879 |
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
880 |
|
881 |
-
exp_values = einsum(
|
882 |
|
883 |
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
884 |
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
885 |
|
886 |
-
new_row_sums =
|
|
|
|
|
|
|
887 |
|
888 |
-
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
|
|
|
|
|
889 |
|
890 |
row_maxes.copy_(new_row_maxes)
|
891 |
row_sums.copy_(new_row_sums)
|
@@ -900,7 +958,7 @@ class FlashAttentionFunction(Function):
|
|
900 |
@staticmethod
|
901 |
@torch.no_grad()
|
902 |
def backward(ctx, do):
|
903 |
-
"""
|
904 |
|
905 |
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
906 |
q, k, v, o, lse = ctx.saved_tensors
|
@@ -915,49 +973,53 @@ class FlashAttentionFunction(Function):
|
|
915 |
dv = torch.zeros_like(v)
|
916 |
|
917 |
row_splits = zip(
|
918 |
-
q.split(q_bucket_size, dim
|
919 |
-
o.split(q_bucket_size, dim
|
920 |
-
do.split(q_bucket_size, dim
|
921 |
mask,
|
922 |
-
lse.split(q_bucket_size, dim
|
923 |
-
dq.split(q_bucket_size, dim
|
924 |
)
|
925 |
|
926 |
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
927 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
928 |
|
929 |
col_splits = zip(
|
930 |
-
k.split(k_bucket_size, dim
|
931 |
-
v.split(k_bucket_size, dim
|
932 |
-
dk.split(k_bucket_size, dim
|
933 |
-
dv.split(k_bucket_size, dim
|
934 |
)
|
935 |
|
936 |
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
937 |
k_start_index = k_ind * k_bucket_size
|
938 |
|
939 |
-
attn_weights = einsum(
|
940 |
|
941 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
942 |
-
causal_mask = torch.ones(
|
|
|
|
|
943 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
944 |
|
945 |
p = torch.exp(attn_weights - lsec)
|
946 |
|
947 |
if exists(row_mask):
|
948 |
-
p.masked_fill_(~row_mask, 0.)
|
949 |
|
950 |
-
dv_chunk = einsum(
|
951 |
-
dp = einsum(
|
952 |
|
953 |
-
D = (doc * oc).sum(dim
|
954 |
ds = p * scale * (dp - D)
|
955 |
|
956 |
-
dq_chunk = einsum(
|
957 |
-
dk_chunk = einsum(
|
958 |
|
959 |
dqc.add_(dq_chunk)
|
960 |
dkc.add_(dk_chunk)
|
961 |
dvc.add_(dv_chunk)
|
962 |
|
963 |
-
return dq, dk, dv, None, None, None, None
|
|
|
|
|
|
26 |
from safetensors.torch import load_file
|
27 |
|
28 |
xformers_available = False
|
29 |
+
try:
|
30 |
import xformers
|
31 |
+
|
32 |
xformers_available = True
|
33 |
except ImportError:
|
34 |
pass
|
|
|
38 |
default = lambda val, d: val if exists(val) else d
|
39 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
|
41 |
+
|
42 |
def get_attention_scores(attn, query, key, attention_mask=None):
|
43 |
|
44 |
if attn.upcast_attention:
|
|
|
67 |
|
68 |
return attention_scores
|
69 |
|
70 |
+
|
71 |
def load_lora_attn_procs(model_file, unet, scale=1.0):
|
72 |
+
|
73 |
+
if Path(model_file).suffix == ".pt":
|
74 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
75 |
+
else:
|
76 |
+
state_dict = load_file(model_file, device="cpu")
|
77 |
+
|
78 |
+
if any("lora_unet_down_blocks" in k for k in state_dict.keys()):
|
79 |
+
# convert ldm format lora
|
80 |
+
df_lora = {}
|
81 |
+
attn_numlayer = re.compile(r"_attn(\d)_to_([qkv]|out).lora_")
|
82 |
+
alpha_numlayer = re.compile(r"_attn(\d)_to_([qkv]|out).alpha")
|
83 |
+
for k, v in state_dict.items():
|
84 |
+
if "attn" not in k or "lora_te" in k:
|
85 |
+
# currently not support: ff, clip-attn
|
86 |
+
continue
|
87 |
+
k = k.replace("lora_unet_down_blocks_", "down_blocks.")
|
88 |
+
k = k.replace("lora_unet_up_blocks_", "up_blocks.")
|
89 |
+
k = k.replace("lora_unet_mid_block_", "mid_block_")
|
90 |
+
k = k.replace("_attentions_", ".attentions.")
|
91 |
+
k = k.replace("_transformer_blocks_", ".transformer_blocks.")
|
92 |
+
k = k.replace("to_out_0", "to_out")
|
93 |
+
k = attn_numlayer.sub(r".attn\1.processor.to_\2_lora.", k)
|
94 |
+
k = alpha_numlayer.sub(r".attn\1.processor.to_\2_lora.alpha", k)
|
95 |
+
df_lora[k] = v
|
96 |
+
state_dict = df_lora
|
97 |
+
|
98 |
+
# fill attn processors
|
99 |
+
attn_processors = {}
|
100 |
+
|
101 |
+
is_lora = all("lora" in k for k in state_dict.keys())
|
102 |
+
|
103 |
+
if is_lora:
|
104 |
+
lora_grouped_dict = defaultdict(dict)
|
105 |
+
for key, value in state_dict.items():
|
106 |
+
if "alpha" in key:
|
107 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(
|
108 |
+
key.split(".")[-2:]
|
109 |
+
)
|
110 |
+
else:
|
111 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(
|
112 |
+
key.split(".")[-3:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
+
lora_grouped_dict[attn_processor_key][sub_key] = value
|
115 |
+
|
116 |
+
for key, value_dict in lora_grouped_dict.items():
|
117 |
+
rank = value_dict["to_k_lora.down.weight"].shape[0]
|
118 |
+
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
|
119 |
+
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
|
120 |
+
|
121 |
+
attn_processors[key] = LoRACrossAttnProcessor(
|
122 |
+
hidden_size=hidden_size,
|
123 |
+
cross_attention_dim=cross_attention_dim,
|
124 |
+
rank=rank,
|
125 |
+
scale=scale,
|
126 |
+
)
|
127 |
+
attn_processors[key].load_state_dict(value_dict, strict=False)
|
128 |
|
129 |
+
else:
|
130 |
+
raise ValueError(
|
131 |
+
f"{model_file} does not seem to be in the correct format expected by LoRA training."
|
132 |
+
)
|
133 |
|
134 |
+
# set correct dtype & device
|
135 |
+
attn_processors = {
|
136 |
+
k: v.to(device=unet.device, dtype=unet.dtype)
|
137 |
+
for k, v in attn_processors.items()
|
138 |
+
}
|
139 |
|
140 |
+
# set layers
|
141 |
+
unet.set_attn_processor(attn_processors)
|
142 |
|
143 |
|
144 |
+
class CrossAttnProcessor(nn.Module):
|
145 |
+
def __call__(
|
146 |
+
self,
|
147 |
+
attn,
|
148 |
+
hidden_states,
|
149 |
+
encoder_hidden_states=None,
|
150 |
+
attention_mask=None,
|
151 |
+
qkvo_bias=None,
|
152 |
+
):
|
153 |
batch_size, sequence_length, _ = hidden_states.shape
|
154 |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
155 |
|
|
|
165 |
query = attn.to_q(hidden_states)
|
166 |
key = attn.to_k(encoder_states)
|
167 |
value = attn.to_v(encoder_states)
|
168 |
+
|
169 |
if qkvo_bias is not None:
|
170 |
query += qkvo_bias["q"](hidden_states)
|
171 |
key += qkvo_bias["k"](encoder_states)
|
172 |
value += qkvo_bias["v"](encoder_states)
|
173 |
+
|
174 |
query = attn.head_to_batch_dim(query)
|
175 |
key = attn.head_to_batch_dim(key)
|
176 |
value = attn.head_to_batch_dim(value)
|
|
|
180 |
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
181 |
w = img_state[sequence_length].to(query.device)
|
182 |
cross_attention_weight = weight_func(w, sigma, attention_scores)
|
183 |
+
attention_scores += torch.repeat_interleave(
|
184 |
+
cross_attention_weight, repeats=attn.heads, dim=0
|
185 |
+
)
|
186 |
+
|
187 |
# calc probs
|
188 |
attention_probs = attention_scores.softmax(dim=-1)
|
189 |
attention_probs = attention_probs.to(query.dtype)
|
190 |
hidden_states = torch.bmm(attention_probs, value)
|
191 |
+
|
192 |
elif xformers_available:
|
193 |
hidden_states = xformers.ops.memory_efficient_attention(
|
194 |
+
query.contiguous(),
|
195 |
+
key.contiguous(),
|
196 |
+
value.contiguous(),
|
197 |
+
attn_bias=attention_mask,
|
198 |
)
|
199 |
hidden_states = hidden_states.to(query.dtype)
|
200 |
+
|
201 |
else:
|
202 |
q_bucket_size = 512
|
203 |
k_bucket_size = 1024
|
204 |
+
|
205 |
# use flash-attention
|
206 |
+
hidden_states = FlashAttn.apply(
|
207 |
+
query.contiguous(),
|
208 |
+
key.contiguous(),
|
209 |
+
value.contiguous(),
|
210 |
+
attention_mask,
|
211 |
+
causal=False,
|
212 |
+
q_bucket_size=q_bucket_size,
|
213 |
+
k_bucket_size=k_bucket_size,
|
214 |
)
|
215 |
hidden_states = hidden_states.to(query.dtype)
|
216 |
+
|
217 |
hidden_states = attn.batch_to_head_dim(hidden_states)
|
218 |
|
219 |
# linear proj
|
220 |
hidden_states = attn.to_out[0](hidden_states)
|
221 |
+
|
222 |
if qkvo_bias is not None:
|
223 |
hidden_states += qkvo_bias["o"](hidden_states)
|
224 |
+
|
225 |
# dropout
|
226 |
hidden_states = attn.to_out[1](hidden_states)
|
227 |
|
228 |
return hidden_states
|
229 |
+
|
230 |
|
231 |
class LoRACrossAttnProcessor(CrossAttnProcessor):
|
232 |
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, scale=1.0):
|
233 |
super().__init__()
|
234 |
|
235 |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
236 |
+
self.to_k_lora = LoRALinearLayer(
|
237 |
+
cross_attention_dim or hidden_size, hidden_size, rank
|
238 |
+
)
|
239 |
+
self.to_v_lora = LoRALinearLayer(
|
240 |
+
cross_attention_dim or hidden_size, hidden_size, rank
|
241 |
+
)
|
242 |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
243 |
self.scale = scale
|
244 |
+
|
245 |
def __call__(
|
246 |
+
self,
|
247 |
+
attn,
|
248 |
+
hidden_states,
|
249 |
+
encoder_hidden_states=None,
|
250 |
+
attention_mask=None,
|
251 |
):
|
252 |
scale = self.scale
|
253 |
qkvo_bias = {
|
|
|
256 |
"v": lambda inputs: scale * self.to_v_lora(inputs),
|
257 |
"o": lambda inputs: scale * self.to_out_lora(inputs),
|
258 |
}
|
259 |
+
return super().__call__(
|
260 |
+
attn, hidden_states, encoder_hidden_states, attention_mask, qkvo_bias
|
261 |
+
)
|
262 |
|
263 |
|
264 |
class LoRALinearLayer(nn.Module):
|
265 |
+
def __init__(self, in_features, out_features, rank=4):
|
266 |
+
super().__init__()
|
267 |
|
268 |
+
if rank > min(in_features, out_features):
|
269 |
+
raise ValueError(
|
270 |
+
f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}"
|
271 |
+
)
|
272 |
|
273 |
+
self.down = nn.Linear(in_features, rank, bias=False)
|
274 |
+
self.up = nn.Linear(rank, out_features, bias=False)
|
275 |
+
self.scale = 1.0
|
276 |
+
self.alpha = rank
|
277 |
|
278 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
279 |
+
nn.init.zeros_(self.up.weight)
|
280 |
|
281 |
+
def forward(self, hidden_states):
|
282 |
+
orig_dtype = hidden_states.dtype
|
283 |
+
dtype = self.down.weight.dtype
|
284 |
+
rank = self.down.out_features
|
285 |
|
286 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
287 |
+
up_hidden_states = self.up(down_hidden_states) * (self.alpha / rank)
|
288 |
|
289 |
+
return up_hidden_states.to(orig_dtype)
|
290 |
|
291 |
|
292 |
class ModelWrapper:
|
|
|
328 |
scheduler=scheduler,
|
329 |
)
|
330 |
self.setup_unet(self.unet)
|
331 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(
|
332 |
+
self.tokenizer, self.text_encoder
|
333 |
+
)
|
334 |
+
|
335 |
+
def set_clip_skip(self, n):
|
336 |
+
self.prompt_parser.CLIP_stop_at_last_layers = n
|
337 |
+
|
338 |
def setup_unet(self, unet):
|
339 |
unet = unet.to(self.device)
|
340 |
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
|
|
347 |
library = importlib.import_module("k_diffusion")
|
348 |
sampling = getattr(library, "sampling")
|
349 |
return getattr(sampling, scheduler_type)
|
350 |
+
|
351 |
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
|
352 |
uncond, cond = text_ids[0], text_ids[1]
|
353 |
+
|
354 |
img_state = []
|
355 |
if state is None:
|
356 |
return torch.FloatTensor(0)
|
357 |
+
|
358 |
for k, v in state.items():
|
359 |
if v["map"] is None:
|
360 |
continue
|
|
|
365 |
truncation=True,
|
366 |
add_special_tokens=False,
|
367 |
).input_ids
|
368 |
+
|
369 |
dotmap = v["map"] < 255
|
370 |
+
arr = torch.from_numpy(
|
371 |
+
dotmap.astype(float) * float(v["weight"]) * g_strength
|
372 |
+
)
|
373 |
img_state.append((v_input, arr))
|
374 |
+
|
375 |
if len(img_state) == 0:
|
376 |
return torch.FloatTensor(0)
|
377 |
+
|
378 |
w_tensors = dict()
|
379 |
cond = cond.tolist()
|
380 |
uncond = uncond.tolist()
|
|
|
389 |
for v_as_tokens, img_where_color in img_state:
|
390 |
is_in = 0
|
391 |
|
392 |
+
ret = (
|
393 |
+
F.interpolate(
|
394 |
+
img_where_color.unsqueeze(0).unsqueeze(1),
|
395 |
+
scale_factor=1 / scale_ratio,
|
396 |
+
mode="bilinear",
|
397 |
+
align_corners=True,
|
398 |
+
)
|
399 |
+
.squeeze()
|
400 |
+
.reshape(-1, 1)
|
401 |
+
.repeat(1, len(v_as_tokens))
|
402 |
+
)
|
403 |
+
|
404 |
for idx, tok in enumerate(cond):
|
405 |
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
406 |
is_in = 1
|
407 |
+
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
408 |
+
|
409 |
for idx, tok in enumerate(uncond):
|
410 |
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
411 |
+
is_in = 1
|
412 |
+
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += ret
|
413 |
|
414 |
if not is_in == 1:
|
415 |
print(f"tokens {v_as_tokens} not found in text")
|
416 |
+
|
417 |
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
418 |
scale_ratio *= 2
|
419 |
|
|
|
485 |
):
|
486 |
return torch.device(module._hf_hook.execution_device)
|
487 |
return self.device
|
488 |
+
|
489 |
def decode_latents(self, latents):
|
490 |
latents = latents.to(self.device, dtype=self.vae.dtype)
|
491 |
latents = 1 / 0.18215 * latents
|
|
|
586 |
pww_attn_weight=1.0,
|
587 |
sampler_name="",
|
588 |
sampler_opt={},
|
589 |
+
scale_ratio=8.0,
|
590 |
):
|
591 |
sampler = self.get_scheduler(sampler_name)
|
592 |
if image is not None:
|
|
|
609 |
# 3. Encode input prompt
|
610 |
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
611 |
text_embeddings = text_embeddings.to(self.unet.dtype)
|
612 |
+
|
613 |
+
init_timestep = (
|
614 |
+
int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0
|
615 |
+
)
|
616 |
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
|
617 |
text_embeddings.device, dtype=text_embeddings.dtype
|
618 |
)
|
|
|
636 |
)
|
637 |
|
638 |
img_state = self.encode_sketchs(
|
639 |
+
pww_state,
|
640 |
g_strength=pww_attn_weight,
|
641 |
text_ids=text_ids,
|
642 |
)
|
643 |
+
|
644 |
def model_fn(x, sigma):
|
645 |
+
|
646 |
latent_model_input = torch.cat([x] * 2)
|
647 |
+
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
|
|
|
|
648 |
encoder_state = {
|
649 |
"img_state": img_state,
|
650 |
"states": text_embeddings,
|
|
|
797 |
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
798 |
latents.device
|
799 |
)
|
800 |
+
|
801 |
img_state = self.encode_sketchs(
|
802 |
+
pww_state,
|
803 |
g_strength=pww_attn_weight,
|
804 |
text_ids=text_ids,
|
805 |
)
|
806 |
|
807 |
def model_fn(x, sigma):
|
808 |
+
|
809 |
latent_model_input = torch.cat([x] * 2)
|
810 |
+
weight_func = lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
|
|
|
|
811 |
encoder_state = {
|
812 |
"img_state": img_state,
|
813 |
"states": text_embeddings,
|
|
|
853 |
sampler_name=sampler_name,
|
854 |
sampler_opt=sampler_opt,
|
855 |
pww_state=None,
|
856 |
+
pww_attn_weight=pww_attn_weight / 2,
|
857 |
)
|
858 |
|
859 |
# 8. Post-processing
|
|
|
867 |
|
868 |
|
869 |
class FlashAttentionFunction(Function):
|
|
|
|
|
870 |
@staticmethod
|
871 |
@torch.no_grad()
|
872 |
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
873 |
+
"""Algorithm 2 in the paper"""
|
874 |
|
875 |
device = q.device
|
876 |
max_neg_value = -torch.finfo(q.dtype).max
|
877 |
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
878 |
|
879 |
o = torch.zeros_like(q)
|
880 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device)
|
881 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device)
|
882 |
|
883 |
+
scale = q.shape[-1] ** -0.5
|
884 |
|
885 |
if not exists(mask):
|
886 |
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
887 |
else:
|
888 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
889 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
890 |
|
891 |
row_splits = zip(
|
892 |
+
q.split(q_bucket_size, dim=-2),
|
893 |
+
o.split(q_bucket_size, dim=-2),
|
894 |
mask,
|
895 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
896 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
897 |
)
|
898 |
|
899 |
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
900 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
901 |
|
902 |
col_splits = zip(
|
903 |
+
k.split(k_bucket_size, dim=-2),
|
904 |
+
v.split(k_bucket_size, dim=-2),
|
905 |
)
|
906 |
|
907 |
for k_ind, (kc, vc) in enumerate(col_splits):
|
908 |
k_start_index = k_ind * k_bucket_size
|
909 |
|
910 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
911 |
|
912 |
if exists(row_mask):
|
913 |
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
914 |
|
915 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
916 |
+
causal_mask = torch.ones(
|
917 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
918 |
+
).triu(q_start_index - k_start_index + 1)
|
919 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
920 |
|
921 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
922 |
attn_weights -= block_row_maxes
|
923 |
exp_weights = torch.exp(attn_weights)
|
924 |
|
925 |
if exists(row_mask):
|
926 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
927 |
|
928 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
|
929 |
+
min=EPSILON
|
930 |
+
)
|
931 |
|
932 |
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
933 |
|
934 |
+
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
935 |
|
936 |
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
937 |
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
938 |
|
939 |
+
new_row_sums = (
|
940 |
+
exp_row_max_diff * row_sums
|
941 |
+
+ exp_block_row_max_diff * block_row_sums
|
942 |
+
)
|
943 |
|
944 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
|
945 |
+
(exp_block_row_max_diff / new_row_sums) * exp_values
|
946 |
+
)
|
947 |
|
948 |
row_maxes.copy_(new_row_maxes)
|
949 |
row_sums.copy_(new_row_sums)
|
|
|
958 |
@staticmethod
|
959 |
@torch.no_grad()
|
960 |
def backward(ctx, do):
|
961 |
+
"""Algorithm 4 in the paper"""
|
962 |
|
963 |
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
964 |
q, k, v, o, lse = ctx.saved_tensors
|
|
|
973 |
dv = torch.zeros_like(v)
|
974 |
|
975 |
row_splits = zip(
|
976 |
+
q.split(q_bucket_size, dim=-2),
|
977 |
+
o.split(q_bucket_size, dim=-2),
|
978 |
+
do.split(q_bucket_size, dim=-2),
|
979 |
mask,
|
980 |
+
lse.split(q_bucket_size, dim=-2),
|
981 |
+
dq.split(q_bucket_size, dim=-2),
|
982 |
)
|
983 |
|
984 |
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
985 |
q_start_index = ind * q_bucket_size - qk_len_diff
|
986 |
|
987 |
col_splits = zip(
|
988 |
+
k.split(k_bucket_size, dim=-2),
|
989 |
+
v.split(k_bucket_size, dim=-2),
|
990 |
+
dk.split(k_bucket_size, dim=-2),
|
991 |
+
dv.split(k_bucket_size, dim=-2),
|
992 |
)
|
993 |
|
994 |
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
995 |
k_start_index = k_ind * k_bucket_size
|
996 |
|
997 |
+
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
998 |
|
999 |
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
1000 |
+
causal_mask = torch.ones(
|
1001 |
+
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
|
1002 |
+
).triu(q_start_index - k_start_index + 1)
|
1003 |
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
1004 |
|
1005 |
p = torch.exp(attn_weights - lsec)
|
1006 |
|
1007 |
if exists(row_mask):
|
1008 |
+
p.masked_fill_(~row_mask, 0.0)
|
1009 |
|
1010 |
+
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
|
1011 |
+
dp = einsum("... i d, ... j d -> ... i j", doc, vc)
|
1012 |
|
1013 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
1014 |
ds = p * scale * (dp - D)
|
1015 |
|
1016 |
+
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
|
1017 |
+
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)
|
1018 |
|
1019 |
dqc.add_(dq_chunk)
|
1020 |
dkc.add_(dk_chunk)
|
1021 |
dvc.add_(dv_chunk)
|
1022 |
|
1023 |
+
return dq, dk, dv, None, None, None, None
|
1024 |
+
|
1025 |
+
FlashAttn = FlashAttentionFunction()
|